
INCENTIVE COMPATIBLE INFORMATION 
DISCLOSURE

Documents de travail GREDEG 
GREDEG Working Papers Series

Masaki Aoyagi
Maxime Menuet

GREDEG WP No. 2024-30
https://ideas.repec.org/s/gre/wpaper.html

Les opinions exprimées dans la série des Documents de travail GREDEG sont celles des auteurs et ne reflèlent pas nécessairement celles de l’institution. 
Les documents n’ont pas été soumis à un rapport formel et sont donc inclus dans cette série pour obtenir des commentaires et encourager la discussion. 
Les droits sur les documents appartiennent aux auteurs. 

The views expressed in the GREDEG Working Paper Series are those of the author(s) and do not necessarily reflect those of the institution. The Working 
Papers have not undergone formal review and approval. Such papers are included in this series to elicit feedback and to encourage debate. Copyright belongs 
to the author(s). 



Incentive Compatible Information Disclosure∗

Masaki Aoyagi† Maxime Menuet‡

ISER GREDEG, CNRS,
Osaka University Université Côte d’Azur
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Abstract

This paper studies the optimal disclosure of information about an agent’s
quality when it is a combination of a component privately observed by the
agent and another latent component. Upon soliciting a report from the
agent about his private observation, a principal performs a test which re-
veals the latent component. The principal then discloses information to
the market/public which rewards the agent with compensation equal to the
agent’s expected quality. We study incentive compatible disclosure rules
that minimize the mismatch between the agent’s true and expected quali-
ties while inducing truth-telling from the agent. The optimal rule entails full
disclosure when the agent’s quality is a supermodular function of the two
components, but entails partial pooling when it is submodular. We express
the optimization problem as a linear transformation of the mean dual-belief,
which describes the joint distribution of prior and mean posterior beliefs un-
der disclosure, and obtain the optimal disclosure rule as a corner solution to
this linear problem. We identify the number of messages required under the
optimal rule and relate it to the agent’s incentive compatibility conditions.
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1 Introduction

The quality of a product, productivity of a worker, and profitability of a startup are
all determined by a combination of multiple attributes some of which are privately
observed by the producer, worker or entrepreneur themselves, while other are
latent characteristics that can be discovered through the involvement of a third
party. For example, a worker’s quality or a student’s employability depends on a
blend of hard skills such as technical expertise and knowledge, and soft skills such
as interpersonal skills. While the worker may privately recognize his hard skills,
his soft skills may be discovered only in practical work environments. Likewise, a
product’s quality is determined not only by the quality of the material it uses but
also by its durability and performance, which can be discovered through extensive
testing. In the same vein, the profitability of a startup is determined not only by
its technical innovation but also by its marketability, which often requires close
evaluation by venture capitalists (Bergemann and Hege, 1998).

This paper develops a model in which an agent’s quality is a combination of
two components: The first component is observed privately by the agent and the
second component is initially unknown to the agent himself. A principal solicits a
report from the agent about the realization of the first component, which we call
the agent’s perceptible type (or p-type in short), and then performs a test which
reveals the second component, which we call the agent’s latent type (or l-type in
short). The distribution of the l -type is such that the higher is the agent’s p-type,
the higher is his l -type in the sense of stochastic dominance. Upon learning the
agent’s true quality, the principal discloses information to the market/public who
compensates the agent with a transfer that equals his expected quality based on the
disclosed information. Through information disclosure and adjustment in the test-
taking cost for the agent, the principal’s mechanism gives the agent an incentive for
truth-telling and minimizes the loss which equals the quadratic difference between
the agent’s true and expected qualities.

Our model is general enough to encompass a few different applications. For
example, the principal in our model can be thought of as a public school system
that accepts students to different programs and then sends them to the labor
market with grade information, or a human resources department within a firm
that offers prospective employees different probationary tasks based on their self-
reported qualifications before a permanent contract is signed. Our model can also
be interpreted as describing product certification where the principal acts as a
public agency that conducts product tests for fees based on information provided
by the suppliers, and then discloses product information to consumers. Yet another
interpretation of our model is provided by stress tests by the banking authority,
which evaluate a bank’s performance at the time of crisis (Goldstein and Leitner,
2018). In many of these interpretations, it is natural to suppose that there is
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positive association between the perceptible and latent attributes: The higher is
the perceptible attribute, the more likely it is that the latent attribute is also
higher: A startup with a more substantial technical innovation is more likely to
seize higher market shares and generate higher profits, a bank with solid financial
data is better positioned to weather a financial crisis, a car made with high-quality
material is more likely to be safer on the road, a student with strong hard skills is
more likely to play a more important role in a team, and so on.1

In the absence of the agent’s incentive problem, full disclosure of the agent’s
true quality minimizes the principal’s loss function since it eliminates any discrep-
ancy between the true and expected qualities. However, full disclosure does not
always induce truth-telling from the agent. Our main result highlights the im-
portance of the functional form of the agent’s quality in formulating the optimal
disclosure mechanism. Specifically, when we say that a disclosure rule is imple-
mentable if it induces truth-telling when combined with proper adjustment of the
test-taking cost, full disclosure is implementable if the agent’s quality is a super-
modular function of his p-type and l -type. Intuitively, supermodularity implies
that the higher is the agent’s p-type, the larger the marginal impact of the l -type
on his quality. For example, the function is supermodular if the quality equals the
product or sum of the agent’s p-type and l -type. Conversely, the quality function
is submodular if the higher is the agent’s p-type, the smaller the marginal impact
of the l -type on his quality. With a strictly submodular quality function, it is not
possible to adjust the test-taking cost to make full disclosure incentive compatible.

To understand the intuition behind the need for pooling, consider the simplest
2 × 2 environment in which the agent’s p-type and the l -type are both binary.
We call a pair of the agent’s p-type and his l -type a profile so that there are
four profiles in this case. By assumption, the distribution of the l -type of the
high p-type agent stochastically dominates that of the low p-type agent. Since
the high p-type agent is more confident in realizing the high l -type than the low
p-type agent, the expected quality following the realization of the high l -type
is more important for the high p-type than for the low p-type. Conversely, the
expected quality following the low l -type is more important for the low p-type
than for the high p-type. This suggests that a disclosure rule is implementable
(i.e., can be made incentive compatible with adjustment in the test-taking cost)
if it creates a larger difference in the expected qualities following the realizations
of low and high l -types when the reported p-type is high than when the reported
p-type is low. If the agent’s quality function is supermodular, this is achieved by
perfectly revealing each profile. On the other hand, when it is submodular, full

1Several studies emphasize the complementarity between technical knowledge and soft skills
(Weinberger, 2014; Balcar, 2016; Piopiunik et al., 2020). For instance, Weidmann and Deming
(2021) demonstrates that individuals with strong social or “non-cognitive” skills enhance the
productivity of their teams.

3



disclosure fails to achieve this, and there should be some message that does not
fully reveal them. One way to create such a message is to pool two l -types when
the reported p-type is low while separating them when the reported p-type is high.
Appropriate adjustment in the test-taking cost then induces the agent to report
his p-type truthfully. Another way to create an imperfect message is to pool the
two p-types when the l -type is low while separating them when the l -type is high.
This also makes the expected quality differential higher when the agent reports
the high p-type than when he reports the low p-type. In other words, if we define
the ex post compensation function to be the agent’s expected quality as a function
of the profile, then the disclosure rule can be made incentive compatible if and
only if it renders the ex post compensation function supermodular. Although the
argument so far assumes pure disclosure rules that combine full disclosure and
complete pooling, the optimal disclosure rule typically entails partial pooling in
order to reduce the mismatch loss from pooling. This implies that each profile is
perfectly revealed with positive probability, and one pooling message is sent with
positive probability based on particular profile realizations. In other words, in
the 2 × 2 environment under consideration, the optimal rule typically sends four
perfectly revealing messages and one pooling message. The above discussion also
suggests that the pooling message has binary support and is sent only after the
realization of certain profiles.

The key step in the analysis is the introduction of the mean dual-belief, a joint
distribution over pairs of profiles where the first profile is distributed according to
the prior and the second is distributed according to the mean posterior beliefs con-
ditional on the first profile. We show that both the principal’s objective function
and the inequalities expressing implementability are linear transformations of the
mean dual-belief. The transformed problem hence has a corner solution. We fur-
ther show that the number of strictly positive entries in the corner solution equals
the number of inequalities in the implementability conditions. Finally, we show
that this optimal solution corresponds to the optimal disclosure rule provided that
the solution is replicated by the probabilities of pooling messages. In general, this
last step requires that the degree of submodularity of the quality function be not
too large.

In the 2 × 2 environment described above, supermodularity of the ex post
compensation function is expressed by a single condition: The difference in the
expected qualities of the agent with the low and high l -types is higher when his
p-type is high than when it is low. The number of pooling messages under the
optimal disclosure rule hence equals the number of the conditions required for the
supermodularity of the ex post compensation function. In the K × 2 environment
where there exist K ≥ 3 p-types and two l -types, a disclosure rule can be made
incentive compatible with the adjustment in the test-taking cost if and only if it

4



leads to a supermodular ex post compensation function as in the 2 × 2 environ-
ment. Since the l -type is binary, the supermodularity of the ex post compensation
function reduces to the K − 1 local conditions. When the degree of submodu-
larity of the quality function is mild, we show that K − 1 gives an upper bound
on the number of pooling messages in the optimal disclosure rule. In the general
K × L environment where there exist K p-types and L l -types, the feasibility
conditions amount to cyclical monotonicity of the interim compensation function,
which equals the agent’s expected quality as a function of his true and reported
p-types.2 Again under a mild degree of submodularity of the quality function,
we show that the number of conditions required for cyclical monotonicity gives an
upper bound on the number of pooling messages under the optimal disclosure rule.

The paper is organized as follows: Section 2 discusses the related literature. We
formulate our model in Section 3 and discuss the implementability of a disclosure
rule in Section 4. Section 5 establishes the optimality of full disclosure when the
quality function is supermodular and presents the linear transformation of the
objective function and implementability conditions using the mean dual-belief.
The optimal disclosure rule under a submodular quality function is studied in
Section 6 for binary l -types, and in Section 7 for the case where the l -type can
take three or more values. We conclude with a discussion in Section 8. Appendix
A presents formal derivation of the mean dual-belief and Appendix B collects the
proofs of lemmas and propositions. Online appendices present variations of the
baseline model: Appendix C presents a model in which the agent can make an ex
ante action choice that stochastically enhances his quality and characterizes the
optimal disclosure rule that induces the agent to take such an action. Appendix D
presents a model in which the principal’s objective is to maximize the probability
that the agent receives a compensation.

2 Related Literature

The present paper is related to a few strands of the literature. First, it is related to
the literature on career concerns (see, e.g., Holmström, 1999; Dewatripont et al.,
1999a,b; Bonatti and Hörner, 2017) which is characterized by the presence of a
worker’s latent attribute and public information. As in models of career concerns,
the agent’s incentive in the present model is guided by the market expectation of
his quality. However, our approach differs significantly in two ways: instead of
focusing on moral hazard, we introduce adverse selection by assuming that the
agent privately observes part of his quality. Another important difference is that

2The concept originates with Rochet (1987).
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we assume that the principal filters information released to the market.3

Second, our model is related to the extensive literature on certification design. 4

In canonical models of certification design, a supplier privately informed about the
quality of his good chooses whether or not to have it certified, and the certifier
optimizes over certification schemes by controlling information disclosed to the
public. The key difference in our model hence is the presence of the test stage,
which would correspond to product testing in the certification framework. 5,6 One
salient conclusion in the certification design literature is that information revealed
by the optimal disclosure rule is coarse. For example, it is often found that the
binary “pass-fail” scheme is optimal. Harbaugh and Rasmusen (2018) show that
the certifier finds it optimal to disclose coarse information when the supplier’s
reporting incentive is taken into account and the certifier minimizes quadratic loss
function. In contrast, the optimal disclosure rule identified in this paper is not
coarse in the sense that it involves perfectly revealing messages and also pools at
most two profiles under one message even when pooling is required.7

The present model can be interpreted as combining the models of career con-
cerns and certification: It introduces the discovery of a latent attribute into the
models of certification, and introduces reporting of a privately perceptible attribute
into the models of career concerns.

Third, our model is related to the literature on school design which discusses the
grading system of a school as a way to disclose information to a potential employer
of its students. Among them, Bizzotto and Vigier (2021) present a moral hazard
model that combines types and performance. In their setup, a planner observes
a students type and designs a grading system that maximizes total educational
output, which equals the number of students achieving competency. While Biz-
zotto and Vigier (2021) assume that competency is a function of both the students
type and effort, we assume that a student’s marketable competency depends on
two inherent characteristics and that schooling offers a process through which his

3Rodina (2020) studies a career concerns model in which the principal engages in information
disclosure with the objective of maximizing an agent’s effort.

4See Dranove and Jin (2010) for a comprehensive survey.
5There is also difference in the certifier’s objective function: In many models, certifiers either

maximize their own profit (see, e.g., Lizzeri, 1999), or the senders’ benefit as in the case of
Ostrovsky and Schwarz (2010) where colleges maximize the students’ job prospects.

6Some recent literature on certification introduces testing by a certifier. See for example
Bizzotto et al. (2020), where the principal decides whether or not to conduct a test to find out
the latent type of the agent after observing the experiment designed by the agent himself and
its outcome.

7The optimality of coarse information in the certification literature is based on different
modelling assumptions that are not readily comparable to those of the present model. For
example, Harbaugh and Rasmusen (2018) assume that the certifier sets a single fee for the test
and perfectly observes the agent’s private type when he receives certification.
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latent characteristic is discovered. Our model thereby contributes to this literature
by analyzing the interaction of multiple competency attributes in the design of an
optimal grading system.

Finally, with the principal being the sender of information about the agent’s
quality, our model belongs to the extensive literature on information design as
pioneered by Kamenica and Gentzkow (2011).8 In contrast with the standard
assumption in the literature that the sender has free access to information that
he discloses, we suppose that the principal as the sender must collect part of
his information from the agent through the provision of proper incentives. 9 In
the standard information design problems, the distribution of posterior beliefs is
constrained only by the Bayes consistency (plausibility) condition which asserts
that the expected value of the posterior beliefs equals the prior belief, enabling
the concavification argument.10 Introduction of the agent’s incentive constraints
implies major technical differences from the standard environment in that they
place additional restrictions on the distribution of posterior beliefs. This makes
it difficult to work directly with the distribution of posterior beliefs and prompts
an alternative approach. The use of the mean dual-belief, which has not been
discussed in the literature to the best of our knowledge, is one such alternative. 11

3 Model

There exist an agent whose quality θ consists of two components s and ω. The
first component s is observed privately by the agent, and is referred to as the
agent’s p-type where p stands for “perceptible.” The p-type s is distributed over
a finite set S ≡ {s1, . . . , sK} where s1 < ∙ ∙ ∙ < sK and K ≥ 2. On the other
hand, the second component ω of the quality θ is initially unknown to the agent
himself, and is referred to as the agent’s l-type where l stands for “latent.” The
l -type ω is distributed over a finite set Ω ≡ {ω1, . . . , ωL}. The agent’s quality θ is
a non-negative increasing function of s and ω:

θ = θ(s, ω).

8See Kamenica (2019) for an early survey.
9Costly information acquisition by the sender is studied in Gentzkow and Kamenica (2014).

The sender in their model however does not face incentive issues in the process.
10The concavification principle asserts that the highest payoff that the principal can achieve

at any prior belief μ0 equals the weighted average of the payoffs he can achieve at different priors
provided that μ0 equals the same weighted average of those different priors. See Section 8.

11Kolotilin et al. (2022) consider the joint distribution of the true state and the receiver’s
action, which in the present model equals the joint distribution of the profile and the posterior
mean. On the other hand, the mean dual-belief is a joint distribution over pairs of profiles. See
Appendix A for discussion on the relationship.
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The pair (s, ω) is referred to as a profile and denoted by v. For any profile v =
(s, ω), write θv = θsω = θ(s, ω). Every profile v = (s, ω) occurs with strictly
positive probability

pv ≡ Pr(v) > 0 for every v = (s, ω) ∈ V ≡ S × Ω,

and the conditional distribution gs(ω) ≡ Pr(ω | s) is ordered by stochastic domi-
nance: For any s, t ∈ S such that s < t,

Pr(ω ≤ ω` | s) > Pr(ω ≤ ω` | t) for ` = 1, . . . , L − 1. (1)

In other words, a higher p-type s is more likely associated with a higher l -type
ω.12

The principal elicits from the agent his p-type s and then subjects him to a
test which reveals to the principal the agent’s l -type ω. The agent incurs test-
taking cost y which is a function of his reported p-type. Let y : S → R be a
cost assignment rule which specifies the test-taking cost for each reported p-type.
At the completion of the test, the principal chooses a message as a function of
the profile v = (s, ω) and sends it to the market/public, which doesn’t directly
observe either the agent’s reported p-type or the test outcome. A disclosure rule
(Z, f) specifies the functional relationship between the profile v = (s, ω) and the
message: Z is the set of possible messages and f : V → ΔZ maps each profile
v = (s, ω) to a probability distribution over Z. Specifically, f(z | v) ∈ [0, 1] is
the probability that message z is sent when the profile v ∈ V is realized. Given
a disclosure rule (Z, f), define ζz ∈ ΔV to be the posterior belief over profiles
conditional on message z ∈ Z, and μz to be the expected quality of the agent
according to ζz:

μz =
∑

v∈V

θv ζz(v).

The agent then receives from the market/public compensation W equal to his
expected quality:

W = μz.

The agent’s utility equals the compensation minus the test-taking cost: W − y. A
disclosure mechanism Γ = (y, Z, f ) is a pair of the cost assignment rule y and the
disclosure rule (Z, f). The timing of events is summarized as follows:

1. The principal chooses and publicly announces the mechanism Γ = (y, Z, f ).

12See the discussion in the Introduction for motivation behind this assumption.
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2. The agent observes his p-type s and reports it to the principal.

3. The agent takes the test by incurring the cost y(s) and the principal observes
the l -type ω.

4. The principal sends a message z to the market/public according to the dis-
closure rule (Z, f).

5. The agent receives compensation W equal to his expected quality μz.

We now describe the conditions that incentivize the agent to report his p-type
truthfully to the principal. The ex post compensation function φ : V → R+ is
defined by

φ(v) =
∑

z∈Z

μz f(z | v) for v ∈ V .

When v = (s, ω), φ(v) is the expected quality of the agent (and hence his expected
compensation) when he reports p-type s and realizes the l -type ω. Define also the
interim compensation function H : S2 → R+ by

H(s, t) =
∑

ω∈Ω

gs(ω) φ(t, ω) for s, t ∈ S.

H(s, t) is the expected quality of the agent before the realization of the l -type ω
but after the agent learns his p-type s and reports t to the principal.

The mechanism Γ = (y, Z, f ) is incentive compatible (IC) if the agent has
incentive to report his p-type truthfully:13

H(s, s) − y(s) ≥ H(s, t) − y(t) for any s, t ∈ S. (2)

The principal chooses a mechanism to best inform the market/public about the
agent’s quality. Specifically, the principal aims to minimize the quadratic difference
between the agent’s quality as revealed from v = (s, ω), and the market expectation

13When the agent’s outside option is normalized to zero, Γ is individually rational (IR) if
H(s, s)−y(s) ≥ 0 for any s ∈ S. Although inclusion of IR is possible, we ignore it in our analysis
to focus on IC.
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of his quality formed from the principal’s announcement:14,15

L(Γ) = Ev,z

[
(θv − μz)

2
]

=
∑

v

∑

z

pv f(z | v) (θv − μz)
2. (3)

The mechanism Γ∗ = (y, Z, f ) is optimal if it minimizes L(Γ) in the class of
incentive compatible mechanisms:

Γ∗ ∈ argmin {L(Γ) : Γ satisfies (IC)}.

Since the cost of taking the test does not enter the principal’s objective function,
it is used solely for the purpose of controlling the agent’s incentive in the report-
ing stage. Our primary focus is hence on the disclosure rule which constitutes an
incentive compatible mechanism when coupled with some cost assignment rule.
Specifically, a disclosure rule (Z, f) is implementable if there exists a cost assign-
ment rule y such that the mechanism Γ = (y, Z, f ) is incentive compatible (IC).

4 Implementable disclosure rules

We begin with the characterization of implementable disclosure rules in terms of
the interim compensation function H. The function H : S2 → R is cyclically
monotone if, for any n = 2, . . . , K and any k1, . . . , kn ∈ {1, . . . , K} which are all
distinct, k1 = mini ki, and k0 = kn,

n∑

i=1

{H(ski
, ski

) − H(ski
, ski−1

)} ≥ 0. (4)

Cyclical monotonicity, first proposed by Rochet (1987), is illustrated in Figure 1,
where a = H(s1, s2)−H(s1, s1), b = H(s2, s4)−H(s2, s2), c = H(s3, s3)−H(s3, s1),
and d = H(s4, s4)−H(s4, s3). The inequality (4) for the sequence (k1, k2, k3, k4) =
(1, 3, 4, 2) requires that c + d ≥ a + b. In general, the graphical interpretation of
(4) is that when we draw a series of (non-overlapping) right triangles with their

14This loss function encompasses a preference for conveying accurate information, a reputa-
tional incentive if the principal relies on an external certifier agency, or a concern for the welfare
of the firm if the principal relies on a specific department within the firm.

15Note that (3) can equivalently be written as L(Γ) = Ez

[
Var(θv|z)

]
, where Var(θv|z) is the

posterior variance of θv given z ∈ Z. Hence, the principal’s objective is alternatively minimization
of the expected value of the posterior variance. Since Ez,v[(θv − μz)2] = Ev[θ2

v] − Ez[μ2
z], the

objective is also equivalent to the maximization of Ez

[
μ2

z

]
. The objective function is hence a

function of the posterior mean of the state, a common assumption in the literature (e.g., Kolotilin,
2018; Dworczak and Martini, 2019; Arieli et al., 2023). However, the mean-preserving spread
(contraction) technique frequently used in this environment cannot be applied here because of
the implementability requirements.
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s1 s2 s3 s4

s1

s2

s3

s4

a

b

c

d

true type

reported type

Figure 1: Cyclical monotonicity of H requires a + b ≤ c + d when (k1, k2, k3, k4) =
(1, 3, 4, 2) in (4)

hypotenuses on the diagonal both above and below it, the sum of the changes
in the value of H along the vertical line segments of those triangles above the
diagonal (a + b in the example) is no larger than the sum of the corresponding
changes below the diagonal (c+d in the example). Different sequences (k1, . . . , kn)
correspond to different collections of such triangles. Since k1 is chosen to be the
smallest among k1, . . . , kn, there exist (n − 1)! such sequences for a fixed n. The
total number of inequalities in (4) for n = 2, . . . , K hence equals

N =
K∑

n=2

(
K

n

)

(n − 1)!. (5)

Importantly, cyclical monotonicity is weaker than supermodularity, which requires
that the change in the value of H along each vertical line segment be no larger
than the corresponding change along the vertical line segment to the right (Figure
1). The following lemma is a formal statement of this observation.

Lemma 1 If H is supermodular, then it is cyclically monotone.

To understand the relationship between cyclical monotonicity of H and im-
plementability of a mechanism, suppose first that the agent has two p-types:
S = {s1, s2}. In this case, the unique relevant sequence is (k1, k2) = (1, 2), and (4)
is written as

H(s1, s2) − H(s1, s1) ≤ H(s2, s2) − H(s2, s1).
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We can then choose the cost assignment rule y to satisfy

H(s1, s2) − H(s1, s1) ≤ y(s2) − y(s1) ≤ H(s2, s2) − H(s2, s1).

It can be readily verified that these inequalities correspond to the (IC) conditions
(2) for s1 and s2. Suppose next that the agent has three p-types S = {s1, s2, s3}.
Under Γ, s1 should have no incentive to misrepresent himself as s2, s2 as s3, and
s3 as s1. These conditions can be respectively written as:

y(s2) − y(s1) ≥ H(s1, s2) − H(s1, s1),

y(s3) − y(s2) ≥ H(s2, s3) − H(s2, s2),

H(s3, s3) − H(s3, s1) ≥ y(s3) − y(s1).

Adding these inequalities side by side, we obtain

H(s3, s3) − H(s3, s1) ≥ H(s1, s2) − H(s1, s1) + H(s2, s3) − H(s2, s2),

which is equivalent to (4) for the sequence (k1, k2, k3) = (1, 3, 2). Different se-
quences appearing in (4) likewise correspond to the feasibility of different com-
binations of incentive conditions. The following proposition, which reproduces
Rochet (1987, Theorem 1, p192), shows that cyclical monotonicity is not only nec-
essary but also sufficient for the existence of a cost assignment rule y that makes
Γ incentive compatible.

Proposition 2 The disclosure rule (Z, f) is implementable if and only if H is
cyclically monotone.16

The following lemma shows that the cyclical monotonicity of the interim com-
pensation function H reduces to the supermodularity of the ex post compensation
function φ when the l -type is binary (Ω = {ω1, ω2}).

Lemma 3 When the l-type is binary Ω = {ω1, ω2}, the disclosure rule (Z, f) is
implementable if and only if φ is supermodular:

φ(t, ω2) + φ(s, ω1) ≥ φ(t, ω1) + φ(s, ω2) if s < t. (6)

Furthermore, φ is supermodular if and only if

φ(sk+1, ω2) + φ(sk, ω1) ≥ φ(sk+1, ω1) + φ(sk, ω2) for k = 1, . . . , K − 1. (7)

16See Rochet (1987) for the proof.
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The discussion so far applies generally to any expected payoff functions H
and φ of the agent and does not depend on the particular interpretation that they
represent expected compensation. We below present a few examples that illustrate
the implementability of some disclosure rules in the simple 2 × 2 environment:
S = {s1, s2} and Ω = {ω1, ω2}. Denote the four profiles by

v1 = (s1, ω1), v2 = (s1, ω2), v3 = (s2, ω1), and v4 = (s2, ω2), (8)

and let

pm = p(vm), θm = θ(vm), φm = φ(vm) for m = 1, . . . , 4. (9)

Example 1 (Full disclosure) Let Z = V and

f(vi | vi) = 1 for i = 1, . . . , 4.

This is the “full” disclosure rule that perfectly reveals every profile (Figure 2).
Since φ(vi) = Ev[θv | vi] = θi under this rule, it is implementable if and only if θ
is supermodular by Lemma 3.

Since the full disclosure rule eliminates any loss arising from the difference
between the true and expected qualities, it is clearly optimal for the principal
if it is implementable. In the following examples, then, suppose that θ is not
supermodular:

Δ ≡ θ2 + θ3 − θ1 − θ4 > 0. (10)

Example 2 (Pass-Fail 1) Let Z = {z1, z2}, and

f(z1 | v) =

{
1 if v = v1,

0 otherwise,
f(z2 | v) =

{
0 if v = v1,

1 otherwise.

This is the rule where the agent obtains the “Fail” grade z1 when the profile
v1 = (s1, ω1) realizes and the “Pass” grade z2 otherwise (Figure 2). In this case,
the ex post compensation function φ is given by

φm =

{
θ1 if m = 1,

μ−1 otherwise,

where μ−1 = Eθ[θ | v 6= v1]. Since μ−1 > θ1, φ is not supermodular:

φ4 − φ3 − φ2 + φ1 = θ1 − μ−1 < 0.

It follows that this disclosure rule is not implementable.

13



Example 3 (Pass-Fail 2) Let Z = {z1, z2}, and

f(z1 | v) =

{
0 if v = v4,

1 otherwise,
f(z2 | v) =

{
1 if v = v4,

0 otherwise.

This is the rule where the agent obtains the “Pass” grade z2 when the profile
v4 = (s2, ω2) realizes and the “Fail” grade otherwise (Figure 2). In this case, the
ex post compensation function φ is given by

φm =

{
θ4 if m = 4,

μ−4 otherwise,

where μ−4 = Ev[θv | v 6= v4]. Since μ−4 < θ4, φ is supermodular:

φ4 − φ3 − φ2 + φ1 = θ−4 − μ1 > 0.

This disclosure rule is hence implementable.

The above examples suggest the following intuition: In order to make φ su-
permodular when θ is not, one needs to either “shrink” the distance φ2 − φ1 or
φ3 − φ1 by “pushing up” φ1 and at the same time “pulling down” φ2 or φ3 by
pooling v1 with a higher realization v2 or v3. The disclosure rule in Example 3
above does this and hence is implementable. On the other hand, the disclosure
rule in Example 2 pools the highest profile v4 with lower realizations. Such a rule
is not implementable since it will shrink the distance φ4−φ3 and φ4−φ2 and hence
lead to an even severer violation of the supermodularity condition.

Example 4 (High-Middle-Low) Let Z = {z1, z2, z3}, and

f(z1 | v) =

{
1 if v = v1,

0 otherwise,
f(z2 | v) =

{
1 if v = v2 or v3,

0 otherwise,

and

f(z3 | s, ω) =

{
1 if v = v4,

0 otherwise.

This is the rule where the agent receives the “high” grade z3 if v = (s2, ω2), the
“low” grade z1 if v = (s1, ω1), and the “medium” grade z2 otherwise (Figure 2).
In this case, the ex post compensation function φ is given by

φm =






θ4 if m = 4,

θ1 if m = 1,

μ23 otherwise,

14
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Figure 2: Disclosure rules in the 2 × 2 environment
Connected profiles are pooled.
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p2+p3
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where

μ23 = Ev[θv | v ∈ {v2, v3}] =
p2θ2 + p3θ3

p2 + p3

.

Since θ1 < μ23 < θ4, this disclosure rule is implementable if and only if

φ4 − φ3 − φ2 + φ1 = θ4 − 2μ23 + θ1 ≥ 0

⇔ Δ ≤
(p2 − p3)(θ3 − θ2)

p2 + p3

,
(11)

where Δ is as defined in (10). Hence, if

(p2 − p3) (θ3 − θ2) > 0, (12)

then (11) holds if Δ
|θ3−θ2|

> 0 is small compared with |p2 − p3|. We will return to
this last observation in Section 6.

5 Full and partial disclosure rules

As noted in Section 4, when there is no incentive issue in the reporting stage, per-
fectly disclosing information about the realized profile v = (s, ω) clearly minimizes
the principal’s loss function L. Specifically, (Z, f) is a full disclosure rule if Z = V ,
and

f(z | v) =

{
1 if z = v,

0 otherwise.

The full disclosure rule however may not induce truth-telling from the agent when
his p-type s is private. To see when full disclosure induces truth-telling, note
that the ex post expected quality φ equals the true quality θ under full disclo-
sure, and hence that the interim compensation function H is given by H(s, t) =∑

ω gs(ω) θ(t, ω). Even when p-type s is private, hence, full disclosure is imple-
mentable if and only if this function is cyclically monotone. The following propo-
sition presents a sufficient condition for this as the first main result on the optimal
disclosure rule.

Proposition 4 Suppose that the quality function θ is supermodular. Then the
optimal mechanism Γ entails full disclosure.

For example, the quality function θ is supermodular if for δ ≥ 0,

θ(s, ω) = s + ω + δ sω, (13)
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or if θ(s, ω) = min {s, ω}. As suggested by these examples, s and ω can be either
complements or substitutes when θ is supermodular.17

In view of Proposition 4, we assume in what follows that the quality function θ
is not supermodular, and more concretely, that it is strictly submodular : For any
s, t ∈ S and ω, ω̂ ∈ Ω such that t > s and ω̂ > ω,

θ(t, ω̂) + θ(s, ω) < θ(s, ω̂) + θ(t, ω). (14)

For example, θ is strictly submodular if δ < 0 in (13), or if there exists a strictly
concave and increasing function u : R+ → R+ such that

θ(s, ω) = u(s + ω).

When considering a class of quality functions in our analysis, we fix the relative
ranking of different profiles according to their values. Specifically, we consider a
total ordering < over the set V = S × Ω of profiles that are consistent with the
value of θ in the sense that

v ≺ v̂ ⇔ θ(v) < θ(v̂).

Since we assume that θ is increasing, < satisfies

(s, ω) ≤ (ŝ, ω̂) and (s, ω) 6= (ŝ, ω̂) ⇒ (s, ω) ≺ (ŝ, ω̂).

When ŝ > s and ω̂ > ω, any of (s, ω̂) � (ŝ, ω), (ŝ, ω) � (s, ω̂), and (s, ω̂) ∼ (ŝ, ω)
is possible.

Given a disclosure rule (Z, f), the mean dual-belief ψ̄f is a probability distri-
bution over pairs of profiles (v, v̂) ∈ V 2 given by18

ψ̄f (v, v̂) = pv Prf (v̂ | v) for every (v, v̂), (15)

where

Prf (v̂ | v) =
∑

z∈Z

f(z | v) ζz(v̂)

is the mean posterior belief weight on v̂ conditional on v under (Z, f). In other
words, for each v, ψ̄f (v, ∙)/pv is the weighted average of the posterior beliefs ζz

17For example, s and ω are complements if θ = sω and are substitutes if θ = s + ω even
though θ is supermodular in both cases. Proposition 4 implies the optimality of full disclosure
in a model in which the agent has no latent type since θ is supermodular if Ω = {ω1}.

18Alternatively, ψ̄f is the mean dual-belief corresponding to the dual-belief distribution τf

specified in Proposition 10 in Appendix A.
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when the weight on each z equals f(z | v). As shown in Appendix A, ψ̄f (v, v̂) also
equals the mean of the product of posterior beliefs:

ψ̄f (v, v̂) =
∑

z∈Z

{∑

v

pv f(z | v)
}

ζz(v) ζz(v̂). (16)

It follows that ψ̄f is symmetric (ψ̄f (v, v̂) = ψ̄f (v̂, v) for any (v, v̂)), and the marginal
distribution of ψ̄f equals the prior (

∑
v̂ ψ̄f (v, v̂) = pv for any v).19

Lemma 5 Let ψ̄f be the mean dual-belief corresponding to a disclosure rule (Z, f).
The ex post compensation function φ, the interim compensation function H, and
the quadratic loss function L are all linear functions of ψ̄f . Specifically, we have

φ(v) =
1

pv

∑

v̂

ψ̄f (v, v̂) θv̂, (17)

H(s, t) =
∑

ω

gs(ω)

p(t, ω)

∑

v̂

ψ̄f

(
(t, ω), v̂

)
θv̂, (18)

L(Γ) =
∑

v≺v̂

ψ̄f (v, v̂) (θv̂ − θv)
2. (19)

Lemma 5 presents a key observation that allows us to consider a simpler linear
problem that corresponds to the principal’s optimization problem.20 In what fol-
lows, we consider disclosure rules with a finite message set Z expressed as follows:

Z = V ∪ {z1, . . . , zR}, V ∩ {z1, . . . , zR} = ∅,

f(v | v) +
R∑

r=1

f(zr | v) = 1 for any v ∈ V .
(20)

In other words, when the profile v is realized, one of the R+1 messages v, z1, . . . , zR

is potentially chosen. Since the message v ∈ V is sent only after its realization
(f(v̂ | v) = 0 if v, v̂ ∈ V and v 6= v̂), each v ∈ V is a perfectly revealing message
of its realization.21 In contrast, each zr ∈ Z is a pooling message that is sent with
positive probability after the realization of multiple profiles.

19We can also verify that when (Z, f) is the full disclosure rule, ψ̄f is diagonal:

ψ̄f (v, v̂) =

{
pv if v = v̂,

0 otherwise

and when (Z, f) is the no disclosure rule, ψ̄f (v, v̂) = pv pv̂ for every (v, v̂) ∈ V 2.
20See problem (29) in Section 6. As discussed there, we can recover from the solution to this

linear problem an optimal disclosure rule through some additional step.
21Inclusion of such a message v in Z is without loss of generality since f(v | v) = 0 is also

allowed.
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Given any disclosure rule (Z, f) represented as in (20), define for each v, v̂ ∈ V
and r = 1, . . . , R,

αr
v = f(zr | v), and σr =

∑

v∈V

pvα
r
v. (21)

As seen, αr
v is the probability of message zr conditional on profile v, and σr is

the marginal probability of zr. For each message zr ∈ Z, let supp(zr) denote the
support of zr:

supp(zr) = {v : αr
v > 0}.

When v 6= v̂, f(v | v̂) = 0 by definition so that the posterior weight on v̂ given
message z = v equals zero: ζv(v̂) = 0. Since ζzr(v) = pv αr

v

σr , it follows from (16)
that

ψ̄f (v, v̂) = f(v | v) ζv(v)ζv(v̂) +
∑

r

σr ζzr(v)ζzr(v̂) = pvpv̂

∑

r

αr
v αr

v̂

σr
.

Let now x be defined by

xvv̂ = |θv − θv̂|
ψ̄f (v, v̂)

pv pv̂

= |θv − θv̂|
R∑

r=1

αr
vα

r
v̂

σr
. (22)

By definition, xvv̂ = xv̂v for any v, and v̂ ∈ V , xvv = 0 for every v. φ, H and L are
all linear functions of x = (xvv̂)v,v̂ since they are linear in ψ̄f by Lemma 5. Our
analysis in what follows revolves around variable x instead of the mean dual-belief
ψ̄f itself.22

The rest of this section introduces some properties of the quality function θ.
Given ε > 0, we say that a submodular quality function θ is ε-linear if there exists
h > 0 such that for any s < t and ω,23

∣
∣
∣
θ(t, ω) − θ(s, ω)

t − s
− h

∣
∣
∣ < ε. (23)

22The reason for the use of x is as follows: We will consider optimal disclosure when the degree
of submodularity of quality functions θ becomes small, which requires considering a sequence of
θ’s. The new variable x simplifies this process by allowing us to remove the effects of θ from the
left-hand sides of the implementability conditions such as (43) in the proof of Proposition 6. The
proof of Lemma 5 also contains the formulae of φ, H and L expressed in terms of x.

23When θ is submodular, its degree of submodularity is small if it is also ε-linear since for any
s < t and ω < ω̂,

{
θ(t, ω̂) + θ(s, ω)

}
−
{
θ(s, ω̂) + θ(t, ω)

}
≥ (h − ε)(t − s) − (h + ε)(t − s)

= −2ε(t − s) ≥ −2ε(sK − s1).
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Given η > 0, a quality function θ has a value margin η if, when θ changes its values
from one profile v to another profile v̂, it does so at least by margin η: There exists
η > 0 such that for any v, v̂ ∈ V ,

θ(v) 6= θ(v̂) ⇒ |θ(v) − θ(v̂)| > η.

Given < and η > 0, let Θ<,η be the class of quality functions such that

Θ<,η = {θ : θ is consistent with <, and has a value margin η}. (24)

6 Models with binary l-types

A binary specification of the l -type (L = 2) is relevant when it can be judged either
good or poor because of physical limitation in precise measurement. In this case,
a disclosure rule is implementable if and only if the ex post compensation function
φ is supermodular by Lemma 3. Lemma 3 further shows that submodularity of φ
reduces to the (K − 1) local conditions (7), implying that implementability of a
disclosure rule is expressed by (K−1) inequalities. We begin with the 2×2 model
where K = L = 2 (i.e, S = {s1, s2} and Ω = {ω1, ω2}), and then consider the case
where K ≥ 3.

6.1 2 × 2 Model

The discussion of implementable disclosure rules in Section 4 (Examples 1-4) al-
ready furnishes the key intuitions developed in this section. We use the notation
in (8) and (9) in Section 4 while noting that the submodularity of θ in (14) is
equivalent to (10). Although none of the disclosure rules in Examples 2-4 involve
randomization, the principal may also benefit from randomization if pooling multi-
ple profiles without randomization results in the slackness in the supermodularity
of φ. This can be seen in the following example.

Example 5 Suppose that the disclosure rule (Z, f) is such that

• Z = V ∪ {z} for z /∈ V ;

• f(z | v1) = f(z | v2) = λ for some λ ∈ (0, 1);

• f(v1 | v1) = f(v2 | v2) = 1 − λ and f(v3 | v3) = f(v4 | v4) = 1.

Figure 3 illustrates this disclosure rule, which pools v1 and v2 with probability λ,
but perfectly reveals them with probability 1 −λ. It also perfectly reveals both v3
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Figure 3: Disclosure rule of Example 5 in the 2 × 2 envi-
ronment
Each circle represents a message. z is an pooling message that is

sent when either v1 or v2 is realized.

and v4. φ is supermodular if and only if

φ1 + φ4 − φ2 − φ3 = {λθ1 + (1 − λ)μ1} + θ4 − {λθ2 + (1 − λ) μ1} − θ3

= (θ4 − θ3) − λ(θ2 − θ1)

≥ 0.

When λ = 1, (Z, f) is the full disclosure rule and not implementable if θ is sub-
modular ( θ4−θ3

θ2−θ1
< 1). On the other hand, when λ = 0, it is implementable but

always generates a loss equal to (θ1−μ1)
2 when the profile is (s1, ω1) and (θ2−μ1)

2

when the profile is (s1, ω2). One can minimize the probability of such a loss while
maintaining implementability by setting λ = θ4−θ3

θ2−θ1
.

Proposition 6 Suppose that the quality function θ is submodular (Δ > 0) and
that (θ, p) satisfies either one of (25), (26), and (27) below:24

(p2 − p3)(θ3 − θ2) ≤ 0, (25)

(p2 − p3)
(θ2 − θ1

θ3 − θ1

−
p3(p1 + p2)

p2(p1 + p3)

)
≤ 0, (26)

Δ ≤
(p2 − p3)(θ3 − θ2)

p2 + p3

. (27)

Then there exists an optimal disclosure rule (Z, f) with exactly one pooling message
z:

Z = V ∪ {z} for z /∈ V .

24Since (26) implies (p2 − p3)(θ3 − θ2) > 0, (25) and (26) are mutually exclusive, and so are
(25) and (27). On the other hand, (26) and (27) have an overlap.
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The support of the pooling message z is binary and is given by

supp(z) =






{v1, v2} if θ2−θ1

θ3−θ1
≤ p3(p1+p2)

p2(p1+p3)
and

either p2 > p3 or (p2 − p3)(θ3 − θ2) ≤ 0,

{v1, v3} if θ2−θ1

θ3−θ1
≥ p3(p1+p2)

p2(p1+p3)
and

either p2 < p3 or (p2 − p3)(θ3 − θ2) ≤ 0

{v2, v3} if (27) holds but (26) fails.

Proposition 6 shows that the unique pooling message is sent only after the re-
alization of a particular pair of profiles.25 In line with the intuition provided in
Examples 2-5, the pooling shrinks the difference between the expected qualities at
v1 and at v2 or between those at v1 and at v3. The disclosure rule of Example 5
(in Figure 3) is indeed one of the rules described in Proposition 6. Although the
highest profile v4 is never pooled with other profiles, v2 and v3 are pooled with
each other in some cases.26

We also note that the probability f(z | v) that the pooling message z is sent
increases with Δ: The proof of Proposition 6 shows that the probability of pooling
under the optimal disclosure rule can be taken as:

f(z | v1) = f(z | v2) = Δ
θ2−θ1

if supp(z) = {v1, v2},
f(z | v1) = f(z | v3) = Δ

θ3−θ1
if supp(z) = {v1, v3},

f(z | v2) = f(z | v3) = p2+p3

p2−p3

Δ
θ3−θ2

if supp(z) = {v2, v3}.
(28)

The interpretation is that the higher degree of submodularity Δ requires a higher
probability of pooling in order to make the ex post compensation function φ su-
permodular.

Graphical illustration of Proposition 6 is possible with the introduction of some
structure on p. Let q = Pr(s1) ∈ (0, 1) be the probability that the agent has the
low p-type, and suppose that

γ ≡ Pr(ω1 | s1) = Pr(ω2 | s2) > 1
2
.

γ is the probability that the l -type is low when the agent has the low p-type or that
it is high when the agent has the high p-type. γ > 1

2
ensures first-order stochastic

25In other words, the posterior belief given the pooling message is the convex combination of
two degenerate posteriors. Kolotilin et al. (2022) call such posteriors pairwise.

26Since (27) is equivalent to (11), the disclosure rule that pools v2 and v3 with positive prob-
ability is optimal only if the disclosure rule that pools these profiles with probability one (in
Example 5) is implementable.
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Figure 4: Support of the pooling message z

q = Pr(s1), β = θ2−θ1
θ3−θ1

, and γ = Pr(ω1 | s1) = Pr(ω2 | s2).
q ≶ 1

2 ⇔ p2 ≶ p3 and β ≶ 1 ⇔ θ2 ≶ θ3.

Pooling with support {v2, v3} is optimal if and only if (27) holds.

dominance (1).27 Denote

β =
θ2 − θ1

θ3 − θ1

.

The sufficient conditions of Proposition 6 are then written as:

(25) ⇔ (1 − β)(2q − 1) ≤ 0,

(26) ⇔ (2q − 1)
(
β −

1 − q

qγ + (1 − q)(1 − γ)

)
≤ 0,

(27) ⇔ Δ ≤ (1 − β)(2q − 1).

Figure 4 describes the optimal disclosure rule for each combination of (β, q). As
seen, pooling v1 and v2 is optimal when β < 1 (⇔ θ2 < θ3) and q = Pr(s1) is not
high, and pooling v1 and v3 is optimal when β > 1 (⇔ θ2 > θ3) and q is not low.
The disclosure rule that pools v2 and v3 is feasible only when Δ satisfies (27).

The intuition behind Proposition 6 is as follows: Using x defined in (22), we

27The joint distribution p is hence given by

p1 = qγ, p2 = q(1 − γ), p3 = (1 − q)(1 − γ), p4 = (1 − q)γ.
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first solve the following problem:28

min
x

L subject to:






φ1 + φ4 − φ2 − φ3 ≥ 0; (implementability)

xvv̂ = xv̂v ≥ 0 for every (v, v̂); (non-negativity)

xvv = 0 for every v.

(29)

Since the objective function L and the implementability conditions in terms of the
ex post compensation function φ are both linear in x, (29) is a linear problem and
admits a corner solution x∗. Specifically, corresponding to the single inequality
in the implementability condition, there exists a single pair of profiles (v, v̂) such
that x∗

vv̂ > 0. (Without (IC), x∗ = 0 is clearly optimal.) By (22), this implies
that

∑R
r=1 αr

v αr
v̂ > 0 for exactly one pair of profiles (v, v̂). This pair is shown to

be one of {1, 2}, {1, 3}, and {2, 3}. We then recover αr
v and αr

v̂ from x∗
vv̂ by first

setting the number of pooling messages equal to one R = 1, and let this pooling
message z = z1 be sent only when the realized profile is either v or v̂: α1

v, α1
v̂ > 0

and α1
v′ = 0 if v′ 6= v, v̂. When {v, v̂} = {1, 2} or {1, 3}, this process always gives

rise to legitimate probabilities αr
v, αr

v̂ ≤ 1. When {v, v̂} = {2, 3}, on the other
hand, we need (27) for αv2 , αv3 ≤ 1 to hold.29 On the other hand, Proposition 6
holds whenever the quality function θ is mildly submodular so that Δ > 0 is small
and satisfies (27). In other words, implementability holds for x∗ small ensuring
αr

v, αr
v̂ ≤ 1 even when {v, v̂} = {2, 3}. This observation leads to the following

corollary to Proposition 6.

Corollary 7 Let < and η > 0 be given, and suppose that θ ∈ Θ<,η is submodular

and ε-linear for ε satisfying 4ε
η
≤ |p2−p3|

p2+p3
. Then there exists an optimal disclosure

rule as described in Proposition 6.

In the analysis of a more general environment below, we generalize Corollary
7 by assuming that Δ > 0 is not large while fixing the probability distribution p.

6.2 K × 2 Model

We now suppose that the number K = |S| of the agent’s p-types s can be greater
than two but continue to assume that the l -type ω is binary.

28Note that this problem is only partial since for example it ignores the marginal probability
requirement pv =

∑
v̂ ψ̄(v, v̂) =

∑
v̂

pvpv̂xvv̂

|θv−θv̂|
(⇔

∑
v̂

pv̂xvv̂

|θv−θv̂|
= 1) for every v.

29This can be seen from the fact that f(z | v2) = f(z | v3) ≤ 1 in the third line of (28)
if and only if (27) holds. When {v, v̂} = {2, 3} but (27) fails, characterization of the optimal
rule is difficult and remains an open question: We conjecture that the optimal disclosure rule
involves four fully revealing messages v1, . . . , v4 along with a pooling message z with support
supp(z) = {v1, v2, v3} as in Example 3.

24



vk+1,1vk1

vk2 vk+1,2

ω

s
sk

ω1

sk+1

ω2

s1 sK

vK1

vK2

v11

v12

z1 zk zk+1 zK

Figure 5: Disclosure rule of Example 6 in the K × 2 environment

Example 6 Consider the following generalization of the disclosure rule discussed
in Example 5: (Z, f) is such that for z1, . . . , zK /∈ V and λ1, . . . , λK ∈ [0, 1],

• Z = V ∪ {z1, . . . , zK};

• f(vk` | vk`) = λk for every k, `;

• f(zk | v) =

{
1 − λk if v = vk1 or vk2,

0 otherwise,

Figure 5 depicts this disclosure rule, which either perfectly reveals the realized
profile or pools the two profiles vk1 and vk2 with the same p-type sk if either of
them occurs. Define

μk = Ev[θv | zk] =
pk1θk1 + pk2θk2

pk1 + pk2

.

Then
φk` = λkθk` + (1 − λk) μk,

so that

φk1 + φk+1,2 − φk2 − φk+1,1 = −λk(θk2 − θk1) + λk+1(θk+1,2 − θk+1,1).

It then follows from (7) that φ is supermodular if and only if

λk+1

λk

≥ ψk ≡
θk2 − θk1

θk+1,2 − θk+1,1

for k = 1, . . . , K − 1. (30)

Since θ is submodular, ψk > 1, suggesting that the probability of perfect revelation
of the l-type should increase with k. In particular, we may take λK = 1 so that
the l -type is fully disclosed when the agent reports the highest p-type sK .
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Proposition 8 Let p, < and η > 0 be given, and suppose that the quality function
θ ∈ Θ<,η is submodular. Then there exists ε > 0 such that if θ is ε-linear, there
exists an optimal disclosure rule (Z, f) such that

• Z = V ∪ {z1, . . . , zR} for some R ≤ K − 1 and z1, . . . , zR /∈ V .

• | supp(zr)| = 2 for every r = 1, . . . , R.

• supp(zr) 6= {v12, vK2}, {vK1, vK2} for any r = 1, . . . , R.

Proposition 8 shows that if the quality function θ is mildly submodular, there
exists an optimal disclosure rule with at most (K − 1) pooling messages each of
which pools no more than two profiles. Furthermore, the pooled pair of profiles
is never the combination of the extreme upper-left profile and the extreme upper-
right profile (v12, vK2) or the extreme lower-right profile and the extreme upper-
right profile (vK1, vK2).

Although Proposition 8 establishes the existence of an optimal disclosure rule
with at most K − 1 pooling messages, not every optimal disclosure rule needs to
have such a property. First, as mentioned in Section 6.1, the argument is based on
the existence of a corner solution x∗ to the linear problem that has at most K − 1
strictly positive coordinates. For a non-generic specification of (p, θ), the linear
problem may have multiple (non-corner) solutions which would correspond to more
than K − 1 pairs of profiles being pooled. Second, the proof of the proposition
replicates x∗ using (αr

v)v,r such that for each r = 1, . . . , K − 1, αr
v, αr

v̂ > 0 for a
single pair (v, v̂). There may as well be other ways to replicate x∗. The number
of pooling messages can also be strictly less than K − 1. To see this point, return
to Example 6 and assume K = 4. The disclosure rule in this example is in line
with the statement of Proposition 8 since it has K − 1 = 3 pooling messages each
of which has binary support. On the other hand, if a disclosure rule has just one
pooling message z1 which has support {v, v̂, ṽ}, then this message pools

(
3
2

)
= 3

pairs of profiles with each other ((v, v̂), (v, ṽ) and (v̂, ṽ)), and hence would imply
x∗

vv̂ > 0 for three pairs of profiles (v, v̂). Such a rule would also be consistent with
the proof of the proposition.

7 General model

We now consider the most general framework where the number of the l -types
is greater than two (L ≥ 3). Unlike when L = 2, the ex post compensation
function φ is not required to be supermodular when L ≥ 3. Instead, as seen in
Proposition 2, the disclosure rule (Z, f) is implementable if and only if the interim
compensation function H : S2 → R is cyclically monotone. Recall from (5) that
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N ≡
∑K

n=2

(
K
n

)
(n − 1)! equals the number of inequalities in the definitions of

cyclical monotonicity of H.

Example 7 Further generalize the disclosure rule discussed in Example 6 as fol-
lows. (Z, f) is such that for z1, . . . , zK /∈ V and λ1, . . . , λK ∈ [0, 1],

• Z = V ∪ {z1, . . . , zK};

• f(vk` | vk`) = λk for every k, `;

• f(zk | v) =

{
1 − λk if v ∈ {vk1, . . . , vkL},

0 otherwise.

In other words, when the profile vk` is realized, it is either perfectly revealed
or is pooled with all other profiles with the same s-coordinates. For any s, t ∈ S,
define

ν(s, t) =
∑

ω∈Ω

gs(ω) θtω.

ν(s, t) can be interpreted as the interim expected quality under full disclosure
when the agent has true p-type s but reports t. When s < t, gt(∙) stochastically
dominates gs(∙) by (1). Since θtω is increasing in ω, we have for any t̂,

ν(t, t̂) > ν(s, t̂) if s < t. (31)

Since Ev[θv | zk] = ν(sk, sk), the function H can be written in terms of λt as:

H(s, t) = λt ν(s, t) + (1 − λt) ν(t, t).

We look for the conditions under which the function H is supermodular, which by
Lemma 1 ensures that (Z, f) is implementable. Take any s, ŝ, t, t̂ ∈ S such that
s < ŝ and t < t̂.

H(ŝ, t̂) − H(s, t̂) ≥ H(ŝ, t) − H(s, t)

⇔
{
λt̂ ν(ŝ, t̂) + (1 − λt̂) ν(t̂, t̂)

}
−
{
λt̂ ν(s, t̂) + (1 − λt̂) ν(t̂, t̂)

}

≥
{
λt ν(ŝ, t) + (1 − λt) ν(t, t)

}
−
{
λt ν(s, t) + (1 − λt) ν(t, t)

}
.

Since ν(ŝ, t̂) − ν(s, t̂) > 0 when ŝ > s as noted above, H is supermodular if and
only if

λt̂

λt

≥
ν(ŝ, t) − ν(s, t)

ν(ŝ, t̂) − ν(s, t̂)
if s < ŝ and t < t̂. (32)
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By assumption, θ is submodular so that θt̂ω − θtω is decreasing in ω when t < t̂.
By the stochastic dominance (1) of gŝ over gs, we then have

ν(ŝ, t̂) − ν(ŝ, t) =
∑

ω

gŝ(ω) (θt̂ω − θtω) ≤
∑

ω

gs(ω) (θt̂ω − θtω) = ν(s, t̂) − ν(s, t).

It follows that the right-hand side of (32) satisfies

ν(ŝ, t) − ν(s, t)

ν(ŝ, t̂) − ν(s, t̂)
≥ 1.

Hence, (Z, f) is implementable when λt is chosen to be increasing in t to satisfy
the inequalities in (32). In particular, for k < `, denote

ψk` = min
s<ŝ

ν(ŝ, sk) − ν(s, sk)

ν(ŝ, s`) − ν(s, s`)
≥ 1.

Then (32) holds if for any λsK
> 0, λs1 , . . . , λsK−1

satisfy

λsk
= min

λsK

ψk1k2 ∙ ∙ ∙ψkm−1km

for each k = 1, . . . , K − 1,

where minimization is taken over all sequences (k1, . . . , km) such that k1 = k <
k2 < ∙ ∙ ∙ < km−1 < km = K.

Proposition 9 Let p, < and η > 0 be given, and suppose that the quality function
θ ∈ Θ<,η is submodular and defined over V = S×Ω with L = |Ω| ≥ 3. Then for N
defined in (5), there exists ε > 0 such that if θ is ε-linear, there exists an optimal
disclosure rule (Z, f) such that

• Z = V ∪ {z1, . . . , zR} for some R ≤ N and z1, . . . , zR /∈ V .

• | supp(zr)| = 2 for every r = 1, . . . , R.

Exact specification of pooling under optimal disclosure depends sensitively on
the parameter values and is not readily available. However, one important impli-
cation of Proposition 9 is that the number R of pooling messages is bounded above
by N , which is a function of the number K of p-types alone and independent of the
number L of l-types. Put differently, even if L becomes very large, the number of
pooling messages under the optimal disclosure rule does not increase indefinitely
as long as K is fixed.

Although the disclosure rule described in Example 7 is implementable as long
as λs1 , . . . , λsK

satisfy (32), it is not optimal when L is large compared with K
under the conditions of Proposition 9: To see this, note that the disclosure rule in
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Example 7 has at least (K − 1) ×
(

L
2

)
pairs of profiles (v, v̂) that are pooled with

each other.30 On the other hand, Proposition 9 shows that the number of pairs of
profiles that are pooled together is a function of only K. Suppose for example that
the p-types are binary (K = 2) and that the l -type can take three values (L = 3).
In this case, the disclosure rule in Example 7 with λs2 = 1 sends no pooling
message when s = s2, and sends one pooling message when s = s1. This pooling
message has support {v11, v12, v13} and hence pools three (=

(
3
2

)
) pairs of profiles:

{v11, v12}, {v12, v13}, and {v11, v13}. The variable x that corresponds to this rule
hence has three strictly positive coordinates. On the other hand, Proposition 9
shows that in such an environment, there exists a unique pair of profiles (v, v̂) for
which x∗

vv̂ > 0. This implies that the disclosure rule in Example 7 is not optimal
for a generic specification of (θ, p).31 As a final remark, N is an upper bound on
the number of inequalities for the cyclical monotonicity of H since some of those
inequalities may be redundant in some cases. This is most evident when the l -
type is binary (L = 2). As seen in Section 6.2, the number of inequalities for the
supermodularity of φ is just K − 1 so that there exist N − (K − 1) redundant
inequalities.32

8 Conclusion

We formulate a model in which an agent’s quality is a function of a privately
perceptible component (p-type) and a latent component (l -type). The agent re-
ports his p-type to a principal and then takes a test which reveals his l -type. The
analysis highlights the intricacy of managing the agent’s incentive and minimiz-
ing the loss through information disclosure. Full disclosure is optimal when the
quality function θ is supermodular, but pooling is required when θ is submodular.
When pooling is required, the number of pooling messages is bounded above by
the number of inequalities that ensure the implementability of the disclosure rule.
Whether the agent’s p-type and l -type are complements or substitutes has little
bearing on the conclusion.

The novelty of our analysis is the description of a disclosure rule in terms of the
mean dual-belief ψ̄, which describes the joint distribution of the prior and mean
posterior beliefs over the agent’s profile v = (s, ω). The key step is to write both the

30Assume that λsK
= 1 so that the l -type is perfectly revealed when the agent reports the

highest p-type sK .
31Under a generic specification of (θ, p), the linear programming problem in terms of x has a

unique corner solution.
32When K = 3, for example, N = 5 and K − 1 = 2 so that three inequalities are redundant.

The redundant inequalities are those corresponding to: (k1, k2) = (1, 3), (k1, k2, k3) = (1, 2, 3),
and (k1, k2, k3) = (1, 3, 2).
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q
1
20 1

Figure 6: Profile of the minimized loss L∗

The graph depicts L∗ along the vertical line segment β = 1 (⇔ θ2 = θ3) in Figure 4.

L∗ =

{
γ(1 − γ)qΔ(θ2 − θ1) if q ≤ 1

2 ,
γ(1−γ)q(1−q)

γq+(1−γ)(1−q) Δ(θ3 − θ1) if q ≥ 1
2 .

principal’s objective function and the feasibility constraints as linear transforma-
tions of the mean dual-belief. Since implementability of a disclosure rule imposes
a restriction on the distribution of posterior beliefs, we cannot apply the standard
concavification argument of Bayesian persuasion. To see this point, consider the
2 × 2 environment of Section 6.1. Full disclosure is trivially implementable when
the agent has the low p-type with probability one, or when he has the high p-type
with probability one. If both p-types occur with positive probability, however, full
disclosure is no longer implementable if θ is submodular. Figure 6 illustrates this
point by depicting the quadratic loss under the optimal disclosure rule in the 2 ×2
example of Section 6.1 corresponding to Figure 4. Since the principal’s objective is
to minimize the loss, cancavification in the current context would imply a convex
function. This however is not the case: Full disclosure is optimal and hence entails
no loss at both ends (q = Pr(s1) ∈ {0, 1}) where the agent’s p-type is known with
probability one, but not implementable at interior points where submodularity
creates an incentive issue.

It is conceivable in some situations that the agent may be interested in en-
hancing his quality before interacting with the principal. For example, a student
may make effort to acquire software skills before attending college, or a company
may invest in the improvement of its product before applying for a certification
program. In Appendix C (online), we identify an optimal mechanism in the 2 × 2
environment when the agent has a binary ex ante action choice which determines
the probability distribution of his p-type s. In line with the intuition developed in
the text, the optimal disclosure rule is such that the number of pooling messages
equals the number of inequalities that ensure implementability, which in this case
corresponds to incentive compatibility for truthful reporting and incentive to exert
costly effort that stochastically enhances the p-type.
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The agent’s incentive compatibility conditions may be relevant in a setting
where the principal has a different objective than minimizing the quadratic loss. In
Appendix D (online), we illustrate the implications of incentive compatibility in a
common framework of persuasion where the agent receives a fixed compensation if
and only if his expected quality is at or above a certain threshold and the principal’s
objective is to maximize the probability that the agent receives compensation.
In the simple 2 × 2 environment, we use the dual-belief construction developed
in Appendix A to show that implementability places a direct restriction on the
posterior belief that follows the principal’s recommendation to hire the agent. We
argue that such a requirement typically creates a loss in the principal’s payoff
compared to when the agent’s p-type is directly observable.

This paper focuses on a model without any formal contract with monetary
transfer. Alternatively, we may assume that the principal sells information to the
market and also compensates the agent for his participation in the mechanism. 33

Examining such a framework, encompassing formal contracts between the agent
and principal and between the market and the principal, along with informal
contracts between the agent and market, could be an interesting avenue for future
research.
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Appendix A Disclosure rule and dual-belief dis-

tributions

The distribution of posterior beliefs τ̂ ∈ Δ(ΔV ) is consistent if
∑

ζ

τ̂(ζ) ζ(v̂) = p(v̂) for every v̂ ∈ V . (33)

As is well-known, there is a one-to-one correspondence between a consistent distri-
bution of posterior beliefs and a disclosure rule. Given a probability distribution ζ
over V and profile ṽ ∈ V , a dual-belief ψv,ζ is a probability distribution over pairs
of profiles (v′, v′′) ∈ V 2 such that

ψv,ζ(v
′, v′′) =

{
ζ(v′′) if v′ = v,

0 otherwise.

That is, when ψv,ζ is identified as a V × V matrix, then it has a unique non-zero
row in row v, and this row equals ζ. The interpretation is that given a disclosure
rule, each dual-belief represents a realization of a pair of a profile and a posterior
belief. Denote by D = V × ΔV the set of all dual-beliefs and consider the set of
probability distributions τ over D as follows:

T =
{
τ ∈ ΔD : There exists a consistent τ̂ ∈ Δ(ΔV ) such that

τ(ψv,ζ) = τ̂(ζ) ζ(v) for every (v, ζ)
}
.

(34)
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We say that τ ∈ T is a consistent dual-belief distribution. The following proposition
establishes that a consistent dual-belief distribution corresponds one-to-one to a
disclosure rule.

Proposition 10 1. Suppose that (Z, f) is a disclosure rule such that
∑

v pv f(z |
v) > 0 for every z ∈ Z. Let ζz ∈ ΔV be

ζz(v̂) =
pv̂ f(z | v̂)

∑
v pv f(z | v)

for every z ∈ Z and v̂ ∈ V .

If we define τf ∈ D by

τf (ψv,ζ) =

{
pv f(z | v) if ζ = ζz,

0 otherwise,
(35)

then τf ∈ T .

2. Suppose that τ ∈ T . If we let Z = ΔV and f : V → ΔZ be defined by

f(ζ | v) =
1

pv

τ(ψṽ,ζ) for every ζ ∈ ΔV and v ∈ V ,

then (Z, f) is a disclosure rule.

Given the disclosure rule (Z, f), (35) shows that τf (ψv,ζz) is the joint probability
of (v, z). Hence, if (Z, f) is specified so that there is a one-to-one correspondence
between message z and the receiver’s action a, then τf is the joint distribution of
state v and action a as studied by Kolotilin et al. (2022).

Proof of Proposition 10.
1. Define

τ̂(ζ) =

{∑
v pv f(z | v) if ζ = ζz for some z ∈ Z,

0 otherwise.

Then τ̂ is consistent and also satisfies

τf (ψv,ζ) = pv̂ f(z | v̂) = ζz(v̂)
∑

v

pv f(z | v) = τ̂(ζz) ζz(v̂).

It follows that τf ∈ T .

2. (Z, f) is a disclosure rule since for any v ∈ V ,

∑

ζ∈ΔV

f(ζ | v) =
∑

ζ∈ΔV

1

pv

τ(ψv,ζ) =
1

pv

∑

ζ∈ΔV

τ̂(ζ) ζ(v) =
1

pv

pv = 1,
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where the third equality follows since τ̂ is consistent.

Given τ ∈ T , the mean dual-belief ψ̄ is a probability distribution over V 2

defined by

ψ̄(v′, v′′) =
∑

v,ζ

τ(ψv,ζ) ψv,ζ(v
′, v′′) for every (v′, v′′) ∈ V 2. (36)

Since ψv,ζ(v
′, v′′) = 0 when v′ 6= v, we can rewrite ψ̄ as:

ψ̄(v′, v′′) =
∑

ζ

τ(ψv′,ζ) ψv′,ζ(v, v′′) =
∑

ζ

τ̂(ζ) ζ(v′) ζ(v′′). (37)

Hence, ψ̄(v, v̂) is the mean of the product of posterior beliefs ζ(v) and ζ(v̂). It then
follows that ψ̄ is symmetric (ψ̄(v, v̂) = ψ̄(v̂, v)), and that the marginal distribution
of ψ̄ equals the prior p: Since τ̂ is consistent, for any v̂ ∈ V ,

∑

v

ψ̄(v, v̂) =
∑

v

∑

ζ

τ̂(ζ) ζ(v) ζ(v̂) =
∑

ζ

τ̂(ζ) ζ(v̂) = p(v̂).

Appendix B Proofs

Proof of Lemma 1. When n = 2, (4) holds under supermodularity since

H(s1, s1) − H(s1, s2) + H(s2, s2) − H(s2, s1) ≥ 0.

As an induction hypothesis, suppose that supermodularity implies (4) for n =
m−1. Suppose that n = m, and assume without loss of generality that k0 = km >
max {k1, . . . , km−1}. Then,

m∑

i=1

{H(ski
, ski

) − H(ski
, ski−1

)}

=
m−1∑

i=1

{H(ski
, ski

) − H(ski
, ski−1

)} + H(skm , skm) − H(skm , skm−1)

≥
m−1∑

i=1

{H(ski
, ski

) − H(ski
, ski−1

)} + H(sk1 , skm) − H(sk1 , skm−1)

=
m−1∑

i=2

{H(ski
, ski

) − H(ski
, ski−1

)} + H(sk1 , sk1) − H(sk1 , skm)

+ H(sk1 , skm) − H(sk1 , skm−1)

= H(sk1 , sk1) − H(sk1 , skm−1) +
m−1∑

i=2

{H(ski
, ski

) − H(ski
, ski−1

)}

≥ 0,
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where the first inequality follows from the supermodularity of H and the second
inequality from the induction hypothesis.

Proof of Proposition 4. Let (Z, f) be the full disclosure rule so that φ(s, ω) =
θ(s, ω) for every (s, ω). We then have

H(s, t) =
∑

ω∈Ω

gs(ω) θ(t, ω).

Take any s, ŝ, t, and t̂ ∈ S such that s < ŝ and t < t̂. Since θ is supermod-
ular, θ(t̂, ω) − θ(t, ω) is an increasing function of ω, and since gŝ(ω) (first-order)
stochastically dominates gs(ω) by (1),

H(ŝ, t̂) − H(ŝ, t) =
∑

ω∈Ω

gŝ(ω) {θ(t̂, ω) − θ(t, ω)}

≥
∑

ω∈Ω

gs(ω) {θ(t̂, ω) − θ(t, ω)}

= H(s, t̂) − H(s, t).

It follows that H is supermodular, and hence is cyclically monotone by Lemma 1.
It follows that (Z, f) is implementable by Proposition 2.

Proof of Lemma 3. It suffices to show that (4) ⇔ (6).
(4) ⇒ (6). When m = 2, sk1 = s and sk2 = t, (4) is written as:

H(s, t) − H(s, s) ≤ H(t, t) − H(t, s),

which is equivalent to

∑

ω

gs(ω) {φ(t, ω) − φ(s, ω)} ≤
∑

ω

gt(ω) {φ(t, ω) − φ(s, ω)}. (38)

Substituting gs(ω1) = 1− gs(ω2) and gt(ω1) = 1− gt(ω2) and then simplifying, we
see that (38) is equivalent to

{gt(ω2) − gs(ω2)}
{
φ(t, ω2) − φ(s, ω2) − φ(t, ω1) + φ(s, ω1)

}
≥ 0.

When s < t, gt(ω2) − gs(ω2) > 0 by stochastic dominance (1) so that (6) holds.
(6) ⇒ (4). Take any s, ŝ, t, t̂ ∈ S such that s < ŝ and t < t̂. By (6), φ(t̂, ω)−φ(t, ω)
is an increasing function of ω. Since gŝ stochastically dominates gs by (1), we have

∑

ω

gs(ω) {φ(t̂, ω) − φ(t, ω)} ≤
∑

ω

gŝ(ω) {φ(t̂, ω) − φ(t, ω)}.
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By the definition of H, this is equivalent to

H(s, t̂) − H(s, t) ≤ H(ŝ, t̂) − H(ŝ, t),

which shows that H is supermodular. It then follows from Lemma 1 that H is
cyclically monotone (4).

We next show (7) ⇒ (6) since the implication (6) ⇒ (7) is clear. Take any sm,
sn ∈ S with m < n. Since (7) holds for k = m, . . . , n − 1, we have

φ(sn, ω2) − φ(sn, ω1) ≥ φ(sn−1, ω2) − φ(sn−1, ω1)

≥ ∙ ∙ ∙

≥ φ(sm+1, ω2) − φ(sm+1, ω1)

≥ φ(sm, ω2) − φ(sm, ω1),

which implies (6).

Proof of Lemma 5. When φ, H and L are respectively given by (17), (18) and
(19), we can rewrite them as functions of x in (22) as follows:

φ(s, ω) = θsω +
∑

v

pv xv,sω (−1)1{v≺sω} , (39)

H(s, t) =
∑

ω

gs(ω)
[
θtω +

∑

v

pv xv,tω (−1)1{v≺tω}

]
, (40)

L(Γ) =
∑

{(v,v̂): v≺v̂}

pvpv̂ xvv̂ |θv̂ − θv|, (41)

where 1E is the indicator function of event E so that (−1)1{v≺sω} =

{
−1 if θv < θsω,

1 if θv ≥ θsω.

1. Ex post compensation function φ(v): (17) follows since

φ(v) =
∑

z

f(z | v)
(∑

v̂

ζz(v̂) θv̂

)
=
∑

v̂

θv̂

∑

z

f(z | v) ζz(v̂) =
1

pv

∑

v̂

θv̂ ψ̄f (v, v̂).

Transforming this further, we obtain

φ(v) =
θv

pv

ψ̄f (v, v) +
1

pv

∑

v̂ 6=v

θv̂ ψ̄f (v, v̂)

=
θv

pv

{
pv −

∑

v̂ 6=v

ψ̄f (v, v̂)
}

+
1

pv

∑

v̂ 6=v

θv̂ ψ̄f (v, v̂)

= θv +
1

pv

∑

v̂ 6=v

ψ̄f (v, v̂) (θv̂ − θv).

Substitution of the definition of x yields (39).
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2. Interim compensation function H(s, t): Substitution of (17) yields

H(s, t) =
∑

ω

gs(ω) φ(t, ω) =
∑

ω

gs(ω)

p(t, ω)

∑

v̂

θv̂ ψ̄f ((t, ω), v̂).

(40) likewise follows from the substitution of (39) into the above expression
of H.

3. Quadratic loss function L: If we write f̄(z) =
∑

v pv f(z | v) for every z ∈ Z,
then μz =

∑
v̂ ζz(v̂) θv̂ = 1

f̄(z)

∑
v pvf(z | v)θv. Since

∑

z

μz f(z | v) = φ(v) =
1

pv

∑

v̂

θv̂ ψ̄f (v, v̂),

we obtain

∑

z

f̄(z) μ2
z =

∑

z

f̄(z) μz
1

f̄(z)

∑

v

pvf(z | v)θv

=
∑

z

μz

∑

v

pvf(z | v)θv

=
∑

v

pvθv

∑

z

μz f(z | v)

=
∑

v,v̂

ψ̄f (v, v̂) θvθv̂.

It then follows that

L(Γ) =
∑

v,z

pvf(z | v) (θv − μz)
2 =

∑

v,z

pvf(z | v)
(
θ2

v − 2θv μz + μ2
z

)

=
∑

v

pvθ
2
v − 2

∑

v

pvθv

∑

v̂

θv̂

pv

ψ̄f (v, v̂) +
∑

z

f̄(z) μ2
z

=
∑

v,v̂

ψ̄f (v, v̂) θv

(
θv − θv̂

)
=
∑

v≺v̂

ψ̄f (v, v̂) (θv̂ − θv)
2,

where the last equality holds because of the symmetry of ψ̄f .

Proof of Proposition 6. Let (Z, f) be any disclosure rule as described in (20).
By Lemma 3, (Z, f) is implementable if and only if φ is supermodular:

φ1 + φ4 − φ2 − φ3 ≥ 0. (42)
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Using Lemma 5, we can rewrite (42) as

∑

v

pvxv1 (−1)1{v≺1} +
∑

v

pvxv4 (−1)1{v≺4}

−
∑

v

pvxv2 (−1)1{v≺2} −
∑

v

pvxv3 (−1)1{v≺3} ≥ Δ,

where Δ is as defined in (10) and Δ > 0 when θ is submodular. Collecting terms
while noting 1 ≺ 2, 1 ≺ 3, 1 ≺ 4, 2 ≺ 4, and 3 ≺ 4, we obtain

x12 (p1 + p2) + x13 (p1 + p3) − x24 (p2 + p4) − x34 (p3 + p4)

+ x14 (p4 − p1) − (−1)1{2≺3}x23 (p2 − p3) ≥ Δ.
(43)

In other words, (43) is an explicit form of the implementability condition in prob-
lem (29). When each xmn can take any non-negative values, there exists an optimal
solution x∗ such that x∗

mn > 0 for a unique pair (m,n) (m ≺ n) and x∗
mn = 0 for

any other pair. Furthermore, x∗
24 = x∗

34 = 0 since their coefficients in (43) are
unambiguously negative. It follows that the optimal solution x∗ to this linear
problem and the corresponding optimum L∗ are given by one of the following:

i) x∗
12 = Δ

p1+p2
⇒ L∗

12 = p1p2

p1+p2
Δ (θ2 − θ1).

ii) x∗
13 = Δ

p1+p3
⇒ L∗

13 = p1p3

p1+p3
Δ (θ3 − θ1).

iii) x∗
23 = Δ

|p2−p3|
⇒ L∗

23 = p2p3

p2−p3
Δ (θ3 − θ2) if (p2 − p3)(θ3 − θ2) > 0.

iv) x∗
14 = Δ

p4−p1
⇒ L∗

14 = p1p4

p4−p1
Δ (θ4 − θ1) if p4 > p1.

Among these, we see that case (iv) is dominated by case (i): L∗
14 < L∗

12 for any
(θ, p).34 We proceed by separately considering conditions (25)-(27).

1. (θ, p) satisfies (25): Since case (iii) is irrelevant in this case, either case (i)
or case (ii) is optimal. We note that L∗

12 ≤ L∗
13 if and only if

p2

p1 + p2

(θ2 − θ1) ≤
p3

p1 + p3

(θ3 − θ1) ⇔
θ2 − θ1

θ3 − θ1

≤
p3(p1 + p2)

p2(p1 + p3)
.

2. (θ, p) satisfies (26): (p2 − p3)
(

θ2−θ1

θ3−θ1
− p3(p1+p2)

p2(p1+p3)

)
≤ 0.35 We first show that

(26) is equivalent to both

L∗
12 ≤ L∗

23 and L∗
13 ≤ L∗

23.

34When p4 > p1,
p1p2

p1+p2
Δ(θ2 − θ1) < p1p4

p4−p1
Δ(θ4 − θ1).

35Note that (26) implies (p2 − p3)(θ3 − θ2) > 0.
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Suppose that p2 − p3 > 0. From cases (i) and (iii), we see that L∗
12 ≤ L∗

23 if
and only if

p3

p2 − p3

(θ3 − θ2) ≥
p1

p1 + p2

(θ2 − θ1)

⇔ p3(p1 + p2) (θ3 − θ2) ≥ p1(p2 − p3) (θ2 − θ1)

⇔ p3(p1 + p2) (θ3 − θ1) ≥ p2(p1 + p3) (θ2 − θ1)

⇔
θ2 − θ1

θ3 − θ1

≤
p3(p1 + p2)

p2(p1 + p3)
.

Likewise, from cases (ii) and (iii), we see that L∗
13 ≤ L∗

23 if and only if

p2

p2 − p3

(θ3 − θ2) ≥
p1

p1 + p3

(θ3 − θ1)

⇔ p2(p1 + p3) (θ3 − θ2) ≥ p1(p2 − p3) (θ3 − θ1)

⇔ p3(p1 + p2) (θ3 − θ1) ≥ p2(p1 + p3) (θ2 − θ1)

⇔
θ2 − θ1

θ3 − θ1

≤
p3(p1 + p2)

p2(p1 + p3)
.

When p2 − p3 < 0, we can likewise show that both L∗
12 ≤ L∗

23 and L∗
13 ≤ L∗

23

are equivalent to

θ2 − θ1

θ3 − θ1

≥
p3(p1 + p2)

p2(p1 + p3)
.

When p2 − p3 = 0, (26) always holds and so do L∗
12 ≤ L∗

23 and L∗
13 ≤ L∗

23.
We next show that in each of case (i) and case (ii), there exists α = (αr

m)m,r

that generates x∗. In case (i), let

R = 1, and α1
m =

{
Δ

θ2−θ1
if m = 1 or 2,

0 otherwise.

α then satisfies α1
1 = α1

2 ∈ (0, 1) since Δ
θ2−θ1

< 1, and generates from (22) x∗

in case (i): x∗
mn = 0 for any (m,n) 6= (1, 2) and

x∗
12 =

Δ

p1 + p2

.

In case (ii), let

R = 1, and α1
m =

{
Δ

θ3−θ1
if m = 1 or 3,

0 otherwise.
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α then satisfies α1
1 = α1

3 ∈ (0, 1) since Δ
θ3−θ1

< 1, and generates from (22) x∗

in case (ii): x∗
mn = 0 for any (m,n) 6= (1, 3) and

x∗
13 =

Δ

p1 + p3

.

3. (θ, p) satisfies (27) but violates (26).
Since (27) implies (p2 − p3)(θ3 − θ2) > 0, case (iii) is relevant, and indeed
optimal since the violation of (26) is equivalent to L∗

23 < L∗
12 and L∗

23 < L∗
13

as seen above. Let

R = 1, and α1
m =

{
(p2+p3) Δ

(p2−p3)(θ3−θ2)
if m = 2 or 3,

0 otherwise.

α then satisfies α1
2 = α1

3 ∈ (0, 1) by (27), and generates x∗ in case (iii):
x∗

mn = 0 for any (m,n) 6= (2, 3), and

x∗
23 =

α1
2α

1
3

p2α1
2 + p3α1

3

|θ3 − θ2| =
Δ

|p2 − p3|
.

It follows that L∗ = L∗
23.

This completes the proof.

Proof of Corollary 7. The conclusion is immediate if (θ, p) satisfies the sufficient
condition (26) of Proposition 6. Suppose then that (θ, p) violates (26). This implies
that (p2 − p3)(θ3 − θ2) > 0. Since θ is ε-linear, we have

Δ = 2
(θ3 − θ1

2
−

θ4 − θ2

2

)
≤ 2
(
(h + ε) − (h − ε)

)
= 4ε.

Hence, for ε as given, θ ∈ Θ<,η implies

Δ ≤ 4ε ≤ η
|p2 − p3|
p2 + p3

<
(p2 − p3)(θ3 − θ2)

p2 + p3

,

which again shows that the sufficient condition (27) of Proposition 6 holds.

Proof of Proposition 8. Since θ is assumed to be submodular,

Δk ≡ θk2 + θk+1,1 − θk1 − θk+1,2 > 0 for k = 1, . . . , K − 1.

Note that φ is supermodular if and only if

φk1 + φk+1,2 − φk2 − φk+1,1 ≥ 0 for k = 1, . . . , K − 1. (44)
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Using (39), we can rewrite (44) as

∑

v

pv

[
xv,skω1 (−1)1{v≺k1} + xv,sk+1ω2 (−1)1{v≺k+1,2}

−xv,skω2 (−1)1{v≺k2} − xv,sk+1ω1 (−1)1{v≺k+1,1}
]
≥ Δk

for k = 1, . . . , K − 1.

(45)

When θ is ε-linear, Δk < 4ε so that Δk → 0 for each k as ε → 0. We proceed
in the following steps. In step 1, we consider minimization of L with respect to
x ≥ 0 subject to (45), and show that there exists a solution x∗ which has at most
K − 1 positive entries. In step 2, we show that when Δ is small, the solution x∗ is
close to 0. In step 3, we show that when x∗ is small, there exists α that generates
it, and corresponds to K − 1 imperfect messages each with support consisting of
two profiles.

1. Consider minimizing (41) with respect to x = (xvv̂)v≺v̂ subject to (45) as
well as xvv̂ ≥ 0. The set of solutions is non-empty since x that corresponds
to the implementable disclosure rule in Example 6 satisfies the feasibility
constraints. Let q =

(
2K
2

)
denote the dimension of x = (xvv̂)v≺v̂. Since (45)

involves K − 1 inequalities, if we denote by A the (K − 1) × q matrix of
coefficients on x, then (45) can be expressed in matrix form as

Ax ≥ Δ ≡






Δ1
...

ΔK−1




 .

The optimization problem with respect to x (corresponding to (29) in the
2 × 2 model) is hence written as:

min
∑

{(v,v̂): v≺v̂}

pvpv̂ xvv̂ |θv̂ − θv|

subject to: x ∈ P ≡ {x : Ax ≥ Δ, x ≥ 0}.

(46)

Since the objective function is also linear in x, there exists a solution x∗

to (46) which is an extreme point of the polyhedron P . Let J = {j :
j = (v, v̂), x∗

vv̂ > 0} be the indices of strictly positive entries of x∗.
We will show that |J | ≤ K − 1. Suppose to the contrary that |J | ≥ K, and
consider the collection (ej)j∈J , where ej is the jth unit vector, which has 1
in the jth entry and zero in all other entries. Denote also by (ζi)

d
i=1 the base

of the null space of A: {x : Ax = 0}. Since the dimension d of this null
space satisfies d = q − rank(A) ≥ q − (K − 1), the collection of d + |J | ≥
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q −K + 1 + K = q + 1 vectors ((ej)j∈J , (ζi)
d
i=1) is linearly dependent. There

then exist (λi)
d
i=1 and (μj)j∈J such that

∑
i λiζi+

∑
j μjej = 0, where λi’s are

not all equal to zero, and μj ’s are not all equal to zero. For κ > 0, consider
x̂ ≡ x∗ + κ

∑
i λiζi and x̃ ≡ x∗ − κ

∑
i λiζi. Since Aζ1 = ∙ ∙ ∙ = Aζd = 0,

Ax̂ = Ax̃ = Ax∗.

Furthermore, since
∑

i λiζi = −
∑

j μjej , if x∗
vv̂ = 0 for any (v, v̂) (i.e.,

j = (v, v̂) /∈ J), then x̂vv̂ = x̃vv̂ = 0 as well. It follows that both x̂ and
x̃ belong to the polyhedron P provided that κ is sufficiently small. Since
x∗ = (x̂ + x̃)/2, this contradicts the fact that x∗ is an extreme point of P .

2. When Δ = 0, it is clear that (46) has a solution x = 0. We show that when
Δ is small, any solution to (46) is close to zero using the theorem of the
maximum. For this, take B > 0 large enough and consider the following
maximization problem:

max
x

(−1)
∑

{(v,v̂): v≺v̂}

pvpv̂ xvv̂ |θv̂ − θv| subject to x ∈ Λ(δ), (47)

where
Λ(δ) = {x = (xvv̂)v≺v̂ : Ax ≥ δ, 0 ≤ x ≤ (B, . . . , B)}.

The objective function is linear in x and hence continuous. Note also that the
matrix A in the constraints is a function only of p and <, and is independent
of the choice of θ ∈ Θ<,η.
The correspondence Λ : RK−1

+ → Rq is continuous at δ = 0 and compact-
valued: To see that it is upper hemi-continuous at δ = 0, note that for
any open set G ⊃ Λ(0) and any δ ≥ 0, Λ(0) ⊃ Λ(δ) so that there exists a
neighborhood U ⊂ RK−1

+ of δ = 0 such that δ ∈ U implies Λ(δ) ⊂ G. To
see that Λ is lower hemi-continuous at δ = 0, take any open set G ⊂ Rq

such that G ∩ Λ(0) 6= ∅. Let x0 be an element of this intersection, and
x̄ ≥ 0 be the value of x corresponding to the disclosure rule in Example 6
for some fixed Δ = Δ̄ � 0 so that Ax̄ ≥ Δ̄. Take ε > 0 small enough so
that εx̄ + (1 − ε)x0 ∈ G, and take U = [0, εΔ̄) ⊂ RK−1

+ as a neighborhood
of 0 ∈ RK−1

+ . Then for any δ ∈ U , we have

A
(
εx̄ + (1 − ε)x0

)
≥ εAx̄ ≥ εΔ̄ � δ,

and hence εx̄+(1−ε)x0 ∈ Λ(δ). It follows that δ ∈ U implies that G∩Λ(δ) 6=
∅, showing that Λ is lower hemi-continuous at δ = 0.
We note that the original optimization problem is equivalent to (47) for
δ = Δ since the upper bound B on xvv̂ can be ignored if B is taken large
enough. Define G∗(δ) to be the set of solutions to (47) for each δ ≥ 0. Note
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that G∗(0) = {0} since x = 0 is the unique solution to (47) when δ = 0.
If we take an open ball around 0 of radius η

K−1
, then G∗(0) = {0} ⊂ O.

Since the correspondence G∗ : RK−1
+ → Rq is upper hemi-continuous by

Berge’s theorem of the maximum, there exists a neighborhood U ⊂ RK−1
+

of δ = 0 such that δ ∈ U implies G(δ) ⊂ O, or equivalently, δ ∈ U implies
x∗

vv̂(δ) < η
K−1

for every (v, v̂) with v ≺ v̂.

3. Take δ > 0 as above and write x∗ ≡ x∗(δ). Let J be the set of indices of non-
zero entries of x∗. By Step 1, |J | ≤ K − 1. We show that when x∗

vv̂ < η
K−1

for every v ≺ v̂, there exist the set of imperfect messages {z1, . . . , zR} and
their probabilities α = (αr

v)v,r that replicate x∗. First, let R = |J | and define

{z1, . . . , zR} = {vv̂ : v ≺ v̂ and x∗
vv̂ > 0}.

For each (v, v̂) with v ≺ v̂, define α by

αvv̂
ṽ =

{
pv+pv̂

|θv̂−θv |
x∗

vv̂ if ṽ ∈ {v, v̂},

0 otherwise.
(48)

In other words, the imperfect message z = vv̂ is sent only when either v or
v̂ is realized. To see that α are well-defined probabilities, note that x∗

vv̂ > 0
for at most K − 1 pairs (v, v̂) with v ≺ v̂ and x∗

vv̂ ≤ η
K−1

for any such pair.
Hence, for each v ∈ V , the sum of probabilities that imperfect messages is
sent at v is given by

∑

v̂∈V
v≺v̂

αvv̂
v +

∑

v̂∈V
v�v̂

αv̂v
v =

∑

v̂∈V
v≺v̂

x∗
vv̂>0

αvv̂
v +

∑

v̂∈V
v̂≺v

x∗
v̂v>0

αv̂v
v

=
∑

v̂∈V
v≺v̂

x∗
vv̂>0

pv + pv̂

|θv̂ − θv|
x∗

vv̂ +
∑

v̂∈V
v̂≺v

x∗
v̂v>0

pv + pv̂

|θv − θv̂|
x∗

v̂v

≤
1

η

{∑

v̂∈V
v≺v̂

x∗
vv̂ +

∑

v̂∈V
v̂≺v

x∗
v̂v

}
≤ 1.

Finally, α replicates x∗ since for the imperfect message z = vv̂,

|θv̂ − θv|
αvv̂

v αvv̂
v̂∑

v̂ αvv̂
v̂

= |θv̂ − θv|
αvv̂

v αvv̂
v̂

pvαvv̂
v + pv̂αvv̂

v̂

=
|θv̂ − θv|αvv̂

v

pv + pv̂

= x∗
vv̂ for any (v, v̂) with v ≺ v̂.
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We finally show that

{v : f(zr | v) > 0} 6= {v12, vK2} and {vK1, vK2} for any r = 1, . . . , R.

Note that these are equivalent to x∗
12,K2 = x∗

K1,K2 = 0. First, x12,K2 = x12,sKω2 (or
xK2,12 = xsKω2,12) appears when k = 1 and when k = K − 1 in (45), and appears
once in each of them: When k = 1 and v = sKω2, the coefficient of xv,s1ω2 is
−pv(−1)1{v≺12} = −pv, and when k = K−1 and v = s1ω2, the coefficient of xv,sKω2

is pv(−1)1{v≺K2} = −pv. Since both coefficients are negative, and the optimal
solution must have x∗

12,K2 = 0. Next, xK1,K2 = xsKω1,sKω2 (or xK2,K1 = xsKω2,sKω1)
appears only when k = K−1 in (45), and appears twice in it: When v = sKω1, the
coefficient of xv,sKω2 is pv(−1)1{v≺K2} = −pv, and when v = sKω2, the coefficient
of xv,sKω1 is −pv(−1)1{v≺K1} = −pv. Again, both coefficients are negative and the
optimal solution must have x∗

K1,K2 = 0.

Proof of Proposition 9.
Using (40), we can express the conditions (4) for cyclical monotonicity as

n∑

i=1

{∑

ω

gski
(ω)
[
θski

ω +
∑

v

pvxv,ski
ω (−1)

1{v≺ski
ω}
]

−
∑

ω

gski
(ω)
[
θski+1

ω +
∑

v

pvxv,ski+1
ω (−1)

1{v≺ski+1
ω}
]}

≥ 0,

which can be rewritten as

n∑

i=1

∑

ω

gski
(ω)
[∑

v

pvxv,ski
ω (−1)

1{v≺ski
ω} −

∑

v

pvxv,ski+1
ω (−1)

1{v≺ski+1
ω}
]

≥
n∑

i=1

∑

ω

gski
(ω)
(
θski+1

ω − θski
ω

)
for (k1, . . . , kn) and n = 2, . . . , K .

(49)

As noted in (5), (49) is a collection of N =
∑K

n=2

(
K
n

)
(n − 1)! inequalities which

are linear in x = (xvv̂)v≺v̂. Since x is itself
(

KL
2

)
-dimensional, we can express (49)

in matrix form as Ax ≥ Δ, where Δ is an N -dimensional vector whose entries are
indexed by (k1, . . . , kn) for n = 2, . . . , K and given by the right-hand side of (49):

Δ(k1,...,kn) =
n∑

i=1

∑

ω

gski
(ω)
(
θski+1

ω − θski
ω

)
.

For any h > 0, when the quality function θ is ε-linear, we see that Δ(k1,...,kn) → 0 as
ε → 0 since by the definition of (k1, . . . , kn),

∑n
i=1

(
ki+1 − ki

)
= 0. Note also that

the matrix A is again a function only of p and <, and independent of the particular
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choice of θ ∈ Θ<,η. The optimization problem with respect to x (corresponding to
(29) in the case of 2 × 2 model) is now given by

min
∑

{(v,v̂): v≺v̂}

xvv̂ pvpv̂ |θv̂ − θv| subject to: Ax ≥ Δ, x ≥ 0. (50)

This problem is identical to the problem (46) in the proof of Proposition 8 for the
K × 2 case except for the number of inequalities in the constraint set. It follows
that the conclusion of the proposition follows if we repeat the argument in the
proof of Proposition 8 once we note that the existence of x̄ ≥ 0 with Ax̄ ≥ Δ̄ is
now given by Example 7.
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Online Appendix

Appendix C Mechanism inducing quality enhance-

ment

For simplicity, we assume that the set of action choices is binary {0, 1}: e = 0
and e = 1 are interpreted as making no effort and making effort, respectively. Let
qe denote the probability distributions of the agent’s p-type when his action is e.
We assume that q1 stochastically dominates q0 so that the agent is more likely to
have a higher p-type when he chooses e = 1 than when he chooses e = 0. The
cost of action e equals ce and satisfies c1 − c0 > 0. We assume that conditional on
his p-type s, the agent’s l -type ω is independent of his action choice, and given
by gs(ω). Since the agent’s incentive in the reporting stage is solely guided by the
distribution of the l -type conditional on his p-type, the conditional independence
assumption implies that the incentive compatibility of the disclosure mechanism
is independent of the agent’s action choice. The following lemma records this
observation.

Lemma 11 The mechanism Γ = (y, Z, f ) is incentive compatible (i.e., satisfies
(2)) when the agent’s p-type s is distributed according to q1 ∈ ΔS if and only if it
is incentive compatible when his p-type is distributed according to q0 ∈ ΔS.

Proof of Lemma 11. Given the disclosure rule (Z, f), the posterior belief ζz

over V and the quality function θ are both independent of the distribution q of
the p-type s, implying that the mean quality μz and the ex post compensation
φ(v) =

∑
z f(z | v) μz are also independent of q. The assumed independence of

the probability gs(ω) of the l -type ω from the agent’s action choice e then shows
that the interim compensation H(s, t) =

∑
ω gs(ω) φ(t, ω) is also independent of

q. Hence, the incentive compatibility conditions (2) of Γ are independent of q as
well.

Let Ue denote the agent’s ex ante utility when he chooses action e and reports
his p-type truthfully:

Ue =
∑

s

{∑

ω

gs(ω) φ(s, ω) − y(s)
}

qe(s) − ce.

An incentive compatible disclosure mechanism Γ = (y, Z, f ) is quality-enhancing
if the agent finds it optimal to choose e = 1 conditional on truthful reporting, or
equivalently,

U1 ≥ U0. (51)
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By Lemma 11, if Γ is incentive compatible and quality-enhancing, then the agent
has no profitable combinatorial deviation, where he first chooses e = 0 and then
misreports his p-type.36 A quality-enhancing incentive compatible mechanism is
optimal if it minimizes the quadratic loss function (3) among the class of such
mechanisms. A disclosure rule (Z, f) is quality-enhancing if there exists a cost-
assignment rule y for which Γ = (y, Z, f ) is quality-enhancing, and is optimal if it
corresponds to an optimal quality-enhancing incentive compatible mechanism.

For simplicity, the analysis in what follows restricts attention to the 2 × 2
environment of Section 6.1 where both the p-type and l -type are binary. The four
profiles are named as in (8). Stochastic dominance of q1 over q0 is equivalent to
q1(s2) > q0(s2), and (51) can be rewritten as

y(s2) − y(s1) ≤
∑

ω

{
φ(s2, ω) gs2(ω) − φ(s1, ω) gs1(ω)

}
−

c1 − c0

q1(s2) − q0(s2)
. (52)

Clearly, it is not possible to induce the agent to choose e = 1 if it is very costly
compared with the corresponding increase in the expected compensation. We
introduce the following measure to quantify the effect of the cost of e = 1:

C =
c1 − c0

{gs2(ω2) − gs1(ω2)} {q1(s2) − q0(s2)}
− (θ4 − θ3). (53)

As seen, C measures the difference between the marginal cost of e = 1 (c1 −
c0, adjusted by the probabilities) and the maximum differential (θ4 − θ3) in the
compensation when the agent has the high p-type s2. The following proposition
describes a sufficient condition in terms of C for the feasibility of an quality-
enhancing mechanism. In line with our intuition developed in the previous sections,
the number of pooling messages required under the optimal mechanism is related
to the number of incentive conditions faced by the agent. Since (51) places one
additional constraint compared with the baseline 2 × 2 model, it follows that the
optimal mechanism entails at most two pooling messages as shown in the following
proposition.

Proposition 12 Suppose that the quality function θ is submodular (Δ > 0) and
that (θ, p) satisfies either one of (25), (26), and (27) of Proposition 6. Further-
more, suppose that C satisfies

C ≤ p1(θ3−θ1)
p1+p3

,

C ≤ p2|θ3−θ2|
p2+p3

if θ2 6= θ3,

C ≤ p2(θ4−θ3)(θ3−θ2)
(p3−p2)(θ3−θ2)+(p2+p3)(θ2−θ1)

if θ2 < θ3 and p2 < p3.

(54)

36By (51), the agent cannot profitably deviate by choosing e = 0 and then truthfully reporting
his p-type. By Lemma 11, (2) ensures that the agent cannot profitably misreport his p-type
regardless of his action choice e.
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Then there exists an optimal quality-enhancing disclosure rule (Z, f) with at most
two pooling messages:

Z = V ∪ {z1, z2} for z1, z2 /∈ V .

The support of each pooling message is binary and the combination of the support
of z1 and z2 is given by

(
supp(z1), supp(z2)

)
∈
{
({1, 2}, {1, 3}), ({1, 2}, {2, 3}), ({1, 3}, {2, 3})

}
.

Proof of Proposition 12. By Lemma 11, incentive compatibility of a disclosure
mechanism is independent of the agent’s action choice e. When the p-type is
binary, the mechanism Γ = (y, Z, f ) is incentive compatible if and only if

∑

ω

{
φ(s2, ω) − φ(s1, ω)

}
gs1(ω) ≤ y(s2) − y(s1)

≤
∑

ω

{
φ(s2, ω) − φ(s1, ω)

}
gs2(ω).

(55)

It follows that an incentive compatible quality-enhancing mechanism Γ = (y, Z, f )
exists if and only if (52) and (55) hold, or equivalently, φ is supermodular, and

∑

ω

{
φ(s2, ω) − φ(s1, ω)

}
gs1(ω)

≤
∑

ω

{
φ(s2, ω) gs2(ω) − φ(s1, ω) gs1(ω)

}
−

c1 − c0

q1(s2) − q0(s2)
.

(56)

Simplifying (56) using Lemma 5 as well as the fact that the l -type ω is binary, we
see that the disclosure rule (Z, f) is quality-enhancing if and only if

x12 (p1 + p2) + x13 (p1 + p3) − x24 (p2 + p4) − x34 (p3 + p4)

+ x14 (p4 − p1) − (−1)1{2≺3}x23 (p2 − p3) ≥ Δ.
(57)

and

−p1x14 − p2x24 − (p3 + p4)x34 + p1x13 − (−1)1{2≺3} p2x23 ≥ C, (58)

where C is as defined in (53).37

Let x∗ denote the optimal solution. Clearly, x∗
24 = x∗

34 = 0 since their coeffi-
cients are negative in both (57) and (58). It follows that only x∗

12, x∗
13, x∗

14, and
x∗

23 can be strictly positive, and by the same logic as in the proof of Proposition
8, we can take x∗ so that at most two of them are strictly positive.

37Note that (57) is identical to (43) in the proof of Proposition 6.
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We begin by showing that x∗
14 = 0. Suppose to the contrary that p4 − p1 > 0

and x∗
14 > 0. For (58) to hold, it must be the case that either x∗

13 > 0 or x∗
23 > 0.

If x∗
14 > 0, then, x∗

vv̂ > 0 for two coordinates (v, v̂). We can then assume that
x∗ satisfies both (57) and (58) with equality since otherwise, there would exist a
solution x∗ such that x∗

vv̂ > 0 only for a single coordinate (v, v̂).

• x∗
13 > 0, x∗

14 > 0, and x∗
vv̂ = 0 for (v, v̂) 6= (1, 3), (1, 4).

Let x̂ and x̃ be such that

x̂13 = Δ
p1+p3

, and x̂vv̂ = 0 for (v, v̂) 6= (1, 3),

x̃14 = Δ
p4−p1

, and x̃vv̂ = 0 for (v, v̂) 6= (1, 4).

Note that both x̂ and x̃ satisfy (57) with equality. Since x∗ also satisfies
(57) with equality, x∗ is a linear combination of x̂ and x̃. Furthermore,
(p4 − p1) x∗

14 = Δ − (p1 + p3) x∗
13 > 0 so that x∗

13 < Δ
p1+p3

, which implies that

p1x̂13 − p1x̂14 = p1
Δ

p1 + p3

> p1x
∗
13 − p1x

∗
14 = C.

In other words, x̂ satisfies (58). The inequalities p3

p1+p3
< p4

p4−p1
and θ3 < θ4

together imply

p1p3 (θ3 − θ1) x̂13 = p1p3 (θ3 − θ1)
Δ

p1 + p3

< p1p4 (θ4 − θ1)
Δ

p4 − p1

= p1p4 (θ4 − θ1) x̃14,

and hence L(x̂) < L(x̃). Since x∗ is a convex combination of x̂ and x̃ as noted
above and since L is linear, L(x∗) is also a convex combination of L(x̂) and
L(x̃), and satisfies L(x∗) > L(x̂). Given that x̂ satisfies both (57) and (58),
this is a contradiction to the optimality of x∗.

• x∗
14 > 0, x∗

23 > 0, and x∗
vv̂ = 0 for (v, v̂) 6= (2, 3), (1, 4).

Let x̂ be such that x̂13 = p4−p1

p1+p3
x∗

14, x̂14 = 0, and x̂vv̂ = x∗
vv̂ for (v, v̂) 6= (1, 3),

(1, 4). x̂ then satisfies both (57) and (58). Since p3

p1+p3
< p4

p4−p1
and θ3 < θ4,

we have

p1p3(θ3 − θ1) x̂13 = p1p3(θ3 − θ1)
p4 − p1

p1 + p3

x∗
14 < p1p4(θ4 − θ1) x∗

14,

which leads to the contradiction that L(x̂) < L(x∗).
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We hence conclude that at most two of x∗
12, x∗

13, and x∗
23 can be strictly positive,

and proceed by examining the following three cases separately.

1) If x∗
12 = 0, then (57) and (58) reduce to

x∗
13 (p1 + p3) − (−1)1{2≺3}x∗

23 (p2 − p3) ≥ Δ, (59)

p1x
∗
13 − (−1)1{2≺3}p2x

∗
23 ≥ C. (60)

At least one of these two inequalities with equality.

(a) Suppose first that (60) holds with equality.

• If 2 ≺ 3 (⇔ θ2 < θ3), then (60) becomes

p1x
∗
13 + p2x

∗
23 = C.

By (54), both (x13, x23) = ( C
p1

, 0) and (x13, x23) = (0, C
p2

) satisfy

p1 + p3

θ3 − θ1

x13 +
p2 + p3

|θ3 − θ2|
x23 ≤ 1. (61)

(x∗
13, x

∗
23) is a convex combination of these two points, and hence

satisfies (61) as well.

• If 2 < 3 (⇔ θ2 ≥ θ3), then (60) becomes

p1x
∗
13 − p2x

∗
23 = C.

If p2 ≥ p3 so that (25) holds, then x∗
23 = 0 and x∗

13 = max { C
p1

, Δ
p1+p3

}.
By (54), x∗ satisfies (61). Assume then in what follows that (25)
does not hold so that θ2 > θ3 and p2 < p3. If x∗ satisfies (59)
with strict inequality, then (x∗

13, x
∗
23) = ( C

p1
, 0), which satisfies (61)

by (54). On the other hand, suppose x∗ satisfies (59) also with
inequality. If (26) holds, then (x∗

13, x
∗
23) = ( Δ

p1+p3
, 0), which satisfies

(61). If (26) does not hold, then (27) holds by assumption. Note
that x∗ in this case is a convex combination of (x13, x23) = ( Δ

p1+p3
, 0)

and (x13, x23) = (0, Δ
p3−p2

), both of which satisfy (61) under (27). It

follows that x∗ also satisfies (61).

(b) If (60) holds with strict inequality, then x∗ is identical to the optimal
solution in the proof of Proposition 6, and satisfies (61) under (25), (26)
or (27).

Take the number of pooling messages R = 2 and let the probability αr
v =

f(zr | v) of message zr given profile v ∈ V (r = 1, 2 and v = 1, 2, 3) be
defined by

α1
2 = 0, α1

1 = α1
3 =

p1 + p3

θ3 − θ1

x∗
13, and α2

1 = 0, α2
2 = α2

3 =
p2 + p3

θ3 − θ2

x∗
23.
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Then αr
v is well-defined since α1

3 + α2
3 ≤ 1 by (61), and hence also α1

1 + α2
1,

α1
2 + α2

2 ≤ 1. Furthermore, it replicates x∗ since

2∑

r=1

αr
1α

r
3

p1αr
1 + p3αr

3

=
α1

1

p1 + p3

= x∗
13,

2∑

r=1

αr
2α

r
3

p2αr
2 + p3αr

3

=
α2

2

p2 + p3

= x∗
23.

2) If x∗
13 = 0, then (57) and (58) reduce to

x∗
12 (p1 + p2) − (−1)1{2≺3}x∗

23 (p2 − p3) ≥ Δ, (62)

− (−1)1{2≺3}p2x
∗
23 ≥ C. (63)

Again, at least one of these two inequalities with equality. Note that (63)
requires that 2 ≺ 3 (⇔ θ2 < θ3).

(a) Suppose first that (63) holds with equality:

p2x
∗
23 = C.

If (62) holds with strict inequality, then (x∗
12, x

∗
23) = (0, C

p2
). By (54),

x∗ satisfies

p1 + p2

θ2 − θ1

x∗
12 +

p2 + p3

|θ3 − θ2|
x∗

23 ≤ 1. (64)

Suppose now that (62) also holds with equality.

• p2 > p3. In this case, (25) does not hold. If (26) holds, then
(x∗

12, x
∗
23) = ( Δ

p1+p2
, 0). If (26) does not hold either, then (27) holds

by assumption and (x∗
12, x

∗
23) is a convex combination of (x12, x23) =

(0, Δ
p2−p3

) and (x12, x23) = ( Δ
p1+p2

, 0), and satisfies (61) since both

these points satisfy (64) under (27).

• p2 ≤ p3. In this case,

(x∗
12, x

∗
23) =

( 1

p1 + p2

{
Δ +

p3 − p2

p2

C
}

,
C

p2

)
.

x∗ then satisfies (64) because of the third condition in (54).

(b) If (63) holds with strict inequality, then x∗ is identical to the optimal
solution in the proof of Proposition 6 and satisfies (64) under (25), (26)
or (27).

If we let R = 2 and define αr
v = f(zr | v) (r = 1 ,2) by

α1
3 = 0, α1

1 = α1
2 =

p1 + p2

θ2 − θ1

x∗
12, and α2

1 = 0, α2
2 = α2

3 =
p2 + p3

|θ3 − θ2|
x∗

23,

then αr
v is a well-defined probability by (64) and replicates x∗ as above.
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3) If x∗
23 = 0, then (57) and (58) reduce to

x∗
12 (p1 + p2) + x∗

13 (p1 + p3) ≥ Δ, (65)

p1x
∗
13 ≥ C. (66)

Again, the optimal x = x∗ satisfies at least one of these two inequalities with
equality.

(a) If (66) holds with equality and (65) holds with strict inequality, then
(x∗

12, x
∗
13) = (0, C

p1
). By (54), x∗ satisfies

p1 + p2

θ2 − θ1

x∗
12 +

p1 + p3

θ3 − θ1

x∗
13 ≤ 1. (67)

(b) If x∗ satisfies both (66) and (65) with equality, then it satisfies (67) be-
cause it is a convex combination of (x12, x13) = ( Δ

p1+p2
, 0) and (x12, x13) =

(0, Δ
p1+p3

), both of which satisfy (67).

(c) If x∗ satisfies (66) with strict inequality, then x∗ is identical to the
optimal solution in the proof of Proposition 6 and satisfies (67) under
(25), (26) or (27).

If we let R = 2 and define αr
v = f(zr | v) (r = 1, 2) by

α1
3 = 0, α1

1 = α1
2 =

p1 + p2

θ2 − θ1

x∗
12, and α2

2 = 0, α2
1 = α2

3 =
p1 + p3

θ3 − θ1

x∗
13,

then αr
v is a well-defined probability by (67) and replicates x∗ as above.

In all the three cases above, hence, we can take R = 2 and αr
v to be positive

for at most two profiles for each r. This completes the proof.

Appendix D Maximizing the probability of com-

pensation under IC

Assume that the agent receives a fixed compensation W = 1 if and only if his ex-
pected quality is at or above θ, where θ > Ev[θv]. Let Π(Γ) denote the probability
that the agent gets receives the compensation under the mechanism Γ:

Π(Γ) = Ev,z[1{μz≥θ}] =
∑

v

pv

∑

z

f(z | v) 1{μz≥θ}.
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The optimal mechanism Γ∗ maximizes the probability of compensation under the
agent’s incentive compatibility conditions:

Γ∗ ∈ argmax
Γ

{
Π(Γ) : Γ satisfies (IC)

}
.

By a version of the revelation principle, it is without loss of generality to restrict
attention to disclosure rules (Z, f) with the binary message space Z = {z0, z1}:
z1 is the recommendation for compensation, and z0 is the recommendation for no
compensation:

μz0 < θ, and μz1 ≥ θ. (68)

Let τf (ψv,ζ) = τ̂(ζ) ζ(v) be the consistent dual-belief distribution corresponding to
the disclosure rule (Z, f) with Z = {z0, z1} (Appendix A). Then by Proposition
10, we can express the principal’s objective function as

Π(Γ) =
∑

v

pvf(z1 | v) =
∑

v

τ̂(ζz1) ζz1(v) = τ̂(ζz1),

and the ex post compensation function φ as

φ(v) = f(z1 | v) =
1

pv

τ̂(ζz1) ζz1(v). (69)

Furthermore, the expected quality given messages z0 and z1 equals

μz0 =
∑

v

ζz0(v)θv, and μz1 =
∑

v

ζz1(v)θv.

In what follows, consider for simplicity the 2 × 2 environment of Section 6.1 and
name the profiles as in (8). It then readily follows from Lemma 3 and (69) that
the disclosure rule (Z, f) is implementable if and only if

φ(v2) − φ(v1) ≤ φ(v4) − φ(v3) ⇔
y2

p2

−
y1

p1

≤
y4

p4

−
y3

p3

, (70)

where ym = ζz1(vm) (m = 1, . . . , 4) is the posterior belief weight on profile v
following z1. Hence, implementability in this case translates to a direct restriction
on the posterior belief after z1. Summarizing, the principal’s problem can be
formulated as:

max
τ̂(ζz1 ),y,ζz0

τ̂(ζz1)

subject to:






y2

p2
− y1

p1
≤ y4

p4
− y3

p3
, (implementability)

∑
m ymθm ≥ θ, (obedience)

(1 − τ̂(ζz1)) ζz0 + τ̂(ζz1) y = p, (consistency)

y ≥ 0,
∑

m ym = 1, τ̂(ζz1) ∈ [0, 1]. (probability requirements)
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Assume now for concreteness that

θ1 < θ2 < θ < θ3 < θ4.

Define

αm = f(z1 | vm) = τ̂(ζz1)
ym

pm

for m = 1, . . . , 4.

Using αm, we can rewrite Π(Γ) and (70) respectively as:

Π(Γ) =
∑

m

pmαm, and α4 − α3 ≥ α2 − α1.

Posterior beliefs y and ζz0 are determined by α and satisfy both consistency and
probability requirements. We can then verify the following:

Lemma 13 For the optimal disclosure rule (Z, f), the implementability condition
(70) is binding, and μz1 = θ.

Proof. If α4 < 1, then a small increase in α4 increases both Π(Γ) and μz1 (and
decreases μz0) without violating (70). Hence, α4 = 1.

Suppose α2 − α1 < α4 − α3. If α3 < 1, then a small increase in α3 increases
both Π(Γ) and μz1 (and decreases μz0) while maintaining (70). If α3 = α4 = 1,
then α2 − α1 < 0. Let α′

3 = α′
4 = 1, α′

2 = α2 + ε2 and α′
1 = α1 − ε1 for ε1, ε2 > 0

small. If p2ε2 > p1ε1, this increases Π(Γ) and μz1 .
38 We hence conclude that (70)

holds with equality.

38Let μ′
z1

denote the conditional mean corresponding to α′. Since α′
1 < α1 and α′

2 > α2,

α1p1θ1 + α2p2θ2

α1p1 + α2p2
<

α′
1p1θ1 + α′

2p2θ2

α′
1p1 + α′

2p2
.

This along with α1p1 + α2p2 < α′
1p1 + α′

2p2 implies

μz1 =

∑
m αmpmθm∑

m αmpm

=
α1p1θ1+α2p2θ2

α1p1+α2p2
(α1p1 + α2p2) + p3θ3 + p4θ4

(α1p1 + α2p2) + p3θ3 + p4θ4

<

α′
1p1θ1+α′

2p2θ2

α′
1p1+α′

2p2
(α1p1 + α2p2) + p3θ3 + p4θ4

(α1p1 + α2p2) + p3θ3 + p4θ4

<

α′
1p1θ1+α′

2p2θ2

α′
1p1+α′

2p2
(α′

1p1 + α′
2p2) + p3θ3 + p4θ4

(α′
1p1 + α′

2p2) + p3θ3 + p4θ4

=

∑
m α′

mpmθm∑
m α′

mpm
= μ′

z1
.
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Suppose next that μz1 > θ. Suppose α1 = α2 = 1. Then α3 = α4 since (70)
holds with equality. We then have a violation of μz1 ≥ θ since

μz1 =
p1θ1 + p2θ2 + α3(p3θ3 + p4θ4)

p1 + p2 + α3(p3 + p4)
≤

∑
m pmθm∑

m pm

= Ev[θv] < θ.

where the last inequality holds by assumption. If α1 = α2 < 1, then a small
increase in both α2 and α1 by the same amount increases Π(Γ) while maintaining
(70) and (68). If α1 < α2, then a small increase in α1 increases Π(Γ) while
maintaining (70) and (68). We hence conclude that μz1 = θ.

By Lemma 13, α1 = α2 + α3 − 1, and

μz1 =
(p1θ1 + p2θ2) α2 + (p1θ1 + p3θ3) α3 + (p4θ4 − p1θ1)

(p1 + p2) α2 + (p1 + p3) α3 + (p4 − p1)
= θ. (71)

The principal’s problem is then written as:

max
α2,α3

(p1 + p2) α2 + (p1 + p3) α3 + (p4 − p1) (72)

subject to: (71) and α2 + α3 ≥ 1. (73)

Define

γ2 =
p4(θ4 − θ) − p1(θ1 − θ)

−p2(θ2 − θ) − p1(θ1 − θ)
,

γ3 =
p4(θ4 − θ) − p1(θ1 − θ)

−p3(θ3 − θ) − p1(θ1 − θ)
,

γ4 =
p3(θ3 − θ) + p4(θ4 − θ)

p3(θ3 − θ) − p2(θ2 − θ)
.

In the (α2, α3)-plane, (γ2, 1) is the point of intersection between (71) and α3 = 1,
(1, γ3) is the point of intersection between (71) and α2 = 1, and (γ4, 1 − γ4) is the
point of intersection between (71) and α2 + α3 = 1. Noting that all the functions
appearing in (73) are linear in (α2, α3), we conclude that there exists an optimal
disclosure rule with αv corresponding to these points of intersection. In other
words, there exists an optimal disclosure rule for which (α1, α2, α3, α4) is given
by39

(α1, α2, α3, α4) ∈ {(γ2, γ2, 1, 1), (γ3, 1, γ3, 1), (0, γ4, 1 − γ4, 1)}.

This is illustrated in Figure 7.
Without the implementability condition (70), the optimal disclosure rule would

set α3 = α4 = 1 and α1 < α2 since θ1 < θ2. For example, if Ev[θv | v 6= 1] < θ,
then we would have α1 = 0 < α2 < 1. It follows that (70) entails a loss in the
principal’s payoff compared with when the agent p-type is directly observed.

39(α1, α2, α3, α4) = (γ2, γ2, 1, 1) is feasible (i.e., γ2 ∈ (0, 1]) under our assumption that θ <
θ3 < θ4. Feasibility of other cases depends on parameters.
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Figure 7: Optimal disclosure rules under the alternative objective function
The numbers at each profile v indicate the probability αv = f(z1 | v).
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