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Abstract

This paper explores the growth-energy-pollution nexus of the environmental Kuznets
curve (EKC) considering the joint contribution to CO2 emissions of the different sec-
tors of the economy for a set of 43 emerging and developing countries. Since energy
consumption and contribution to GDP growth can vary remarkably among sectors,
the latter are likely to be characterized by heterogeneous responses to pollution from
macroeconomic factors. We adopt an index decomposition approach disentangling the
effect of energy consumption from intra-sectoral shifts in economic activities, which
allows to evaluate improvements in energy efficiency across sectors. For the empirical
analysis, we employ System and Difference GMM estimations using longitudinal obser-
vations from 1998 to 2019. Our econometric results reveal substantial heterogeneity of
responses to carbon dioxide reduction across sectors. Particularly, we validate the exis-
tence of the EKC in energy-related measures for the sole manufacturing sector, and in
GDP growth for the commercial and public sector. On the other hand, while emissions
increase proportionately with growth in the transportation sector, energy efficiency
measures seem to be ineffective in curtailing emissions in both the transportation and
commercial and public sectors. Our results bear recommendations for the achievement
of effective carbon neutrality policies.
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Highlights

• We explore the presence of sector-level EKCs for a set of 43 emerging and devel-
oping economies.

• The energy intensity index is decomposed into improvements in energy efficiency
and shifts in sectoral economic activities.

• In relation to economic growth, the EKC is only validated for the commercial and
public sector.

• In relation to energy-related measures, the EKC is validated for the sole manu-
facturing and construction sector.
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List of Abbreviations

• CO2 Emissions: Carbon Dioxide Emissions (million tonnes of CO2)

• EKC: Environmental Kuznets Curve

• FDI: Foreign Direct Investment

• GDP: Gross Domestic Product (constant 2015 US$)

• GVA: Gross Value Added (constant 2015 US$)

• GHG: Greenhouse gases

• GMM: Generalized Method of Moments

• GNI: Gross National Income (referred to but not used as data)

• MENA: Middle East and North Africa

• MSW: Municipal Solid Waste

• OECD: Organization for Economic Cooperation and Development

• UNSDG: United Nations Sustainable Development Goals

• Et = total energy consumption (terajoules)

• Yt = GDP

• ent = aggregate energy intensity

• en0 = aggregate energy intensity in base year

• It = aggregate energy intensity index

• LEFF
t = Laspeyres Efficiency Index

• LACT
t = Laspeyres Activity Index

• PEFF
t = Paasche Efficiency Index

• PACT
t = Paasche Activity Index

• FEFF
t = Fisher Efficiency Index

• FACT
t = Fisher Activity Index
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1 Introduction
In light of recent contributions demonstrating the sector-specific nature of pollutant
sources (Guo et al., 2022[20]; Huo et al., 2022[22]; Halkos et al., 2021[21]; Ru et al.,
2018[49]), sector-specific solutions need to be adopted for achieving carbon neutral
policies. Growth led with higher emissions in certain sectors such as manufacturing,
commercial or transportation, for example, can be considered to be in conflict with
the UN Sustainable Development Goals (UNSDGs) of responsible consumption and
production, the building of sustainable infrastructures and cities, and access to clean
energy (UNSDG, 2023[57]). For any country, the contribution to total output from the
various sectors of the economy can have varied impacts on total energy consumption
and emissions. Tajudeen et al. (2018)[51] define the aggregate energy intensity of a
country as the product of economic activity and energy intensity summed across all
the sectors of the economy. Thus, each sector becoming more or less energy intensive
(improvements or declines in energy efficiency) along with its relative share in total eco-
nomic output is what determines a nation’s aggregate energy intensity. Although not
considered explicitly by the authors, improvements in energy efficiency, even if similar
across sectors, would still have heterogeneous impacts on aggregate carbon emissions
for a country. In fact, different sectors may primarily use different fuels with different
carbon/emission intensity; for instance, improvements in energy efficiency in the trans-
portation and manufacturing sectors may exert a large impact on emissions if they are
heavily dependent on carbon-emitting fossil fuels.

In this work, we aim at offering a comprehensive examination of the interdepen-
dency between emissions, GDP growth, and energy intensity at a sectoral level. To
address our question of the nexus between emissions, GDP and energy consumption,
we consider the sectors which are common across all the variables: that is, manufactur-
ing and construction, transportation, commercial and public and agriculture, forestry
and fishing. Specifically, the objective of this study is to detect evidence of the En-
vironmental Kuznets Curve (EKC) at the sector level for a large set of emerging and
developing countries. To the best of our knowledge, prior contributions have focused
on selecting specific sectors for individual countries (see, e.g., recent contributions by
Feng and Wang (2018)[17], Chen et al. (2022)[14], and Ma and Cai (2019)[34]1), or
have considered total emissions at the economy-level for different sets of countries (see,
e.g., Muhammad (2019)[36], Khan and Ozturk (2021)[31], and Wang (2023)[59]). Our
study possibly provides the first attempt to investigate the EKC considering more than
one sector and multiple countries at the same time. In addition, following the index
decomposition approach adopted in recent studies (see, e.g., Jain, 2023[25]; Patiño et
al., 2021[44]; Ma and Cai, 2019[34]; Tajudeen et al., 2018[51]), we attempt to effectively
decouple the contribution of sectoral activity and energy-related measures to emissions.
Following the theoretical framework of recent contributions (Bennedsen et al., 2023[8];
Jiang et al., 2021[27]; Pata, 2018[43]), this work considers total CO2 emissions from fuel
combustion and the value added share in GDP from each sector of the economy. While
covering the four sectors of manufacturing and construction, transportation, commer-
cial and public, and agriculture and forestry, we make an additional contribution to the
literature by decomposing the energy intensity index into the efficiency and activity

1These studies focus, respectively, on the transportation sector, the residential, and the commercial and
building sectors for China.
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indexes for each of these sectors as in Tajudeen et al. (2018)[51]2.
All in all, we believe that this paper contributes to the EKC literature by advancing

our current understanding on the sectoral emission-growth-energy nexus in developing
and emerging countries, thereby suggesting potential energy-related improvements for
multiple sectors of the economy. The remainder of the paper is organized as follows:
Section 2 provides a brief literature review, Section 3 explains the data sources and
methodology, Section 4 focuses on the empirical findings and Section 5 concludes.

2 Literature review
The literature on the EKC is extensive, covering a wide range of environmental out-
comes, sectors of the economy, countries, and structural determinants3.

For the transportation sector, studies such as by Guo et al. (2022)[20] for China
show an inverted U- shaped relationship between GDP per capita and the sector’s car-
bon emissions which is consistent with the existence of the EKC. A negative effect on
the transportation sector’s emissions is exerted by a higher transportation consumption
price index which includes the cost of the vehicle, fuel and other costs. The paper further
segregates the 30 Chinese provinces into four groups accounting for differences in GDP
and emissions, with results remaining substantially invariant. For the agriculture and
forestry sector, Chandio et al. (2020)[13] examine the dynamic relationship between
crop production, livestock production power consumption, power consumption in agri-
culture, forest and CO2 emissions in China. Their findings pinpoint the prevalence of
a long-run relationship between these variables and CO2 emissions, calling for the Chi-
nese government to revisit its policies in connection with crop production and livestock
to conduct policies directly bearing on CO2 emissions. Jeong and Kim (2013)[26], in
the context of Korea, study greenhouse gas (GHG) emissions from the manufacturing
sector and find that sectors which are more coal- and oil-intensive are responsible for
higher shares in total GHG emissions. Results show that GHG emission reductions are
mostly due to change in the structure of the manufacturing sector and reduced energy
intensity across sectors varies according to the share of energy consumption amongst

2Specifically, we employ the Fisher index decomposition, which is is the geometric mean of the Laspeyres
and Paasche indexes. As it will be explained in a following section, the calculations for the efficiency and
activity indexes for each of the Laspeyres and Paasche indexes come out to be equal for each of the sectors.
In addition, although the two indexes imply different decompositions, the associated residuals may equally
explain significant variability in the underlying index of energy intensity. Generally speaking, contributions
performing energy index decomposition in the literature remain limited. Torvanger (1991)[54] decomposes the
manufacturing sector’s energy intensity for 9 OECD countries and finds small differences in computations
between the Laspeyres index and the Divisia index. In a more recent study, Jain(2023)[25] uses index
decomposition analysis to demonstrate how in India the increase in energy consumption in the manufacturing
sector during the period 2011-2019 has been partially contained by improvements in both structural changes
and energy efficiency. Similarly, Zakari et al. (2021)[63] employ Fisher Ideal index decomposition analysis to
show how structural reforms negatively impacted energy consumption in the Nigerian manufacturing sector
during the 1991-2014 period.

3In its seminal definition, the EKC hypothesis refers to an inverse U-shaped relationship between eco-
nomic activity and gas emissions (Müller-Fürstenberger and Wagner, 2007[37]); namely, growth increases
are coupled with environmental degradation until a certain point, after which economic expansion leads
conversely to environmental improvement. This reverse trend generally occurs thanks three macro-drivers
affecting the economy as a whole: the scale, composition, and technique effects (see Brock et al., 2005[12]).
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the latter. In other words, structural changes in the manufacturing sector imply a
change in the proportion of energy-intensive industries in that sector. Boubellouta and
Kusch-Brandt (2020)[11] analyze the presence of the EKC for e-waste in Europe (EU28
+ 2) for the period 2000-2016, arguing that e-waste generation is connected with change
in per capita GDP. While earlier studies focusing on a waste Kuznets curve have used
Municipal Solid Waste (MSW), plastic waste and medical waste, the paper includes
electrical and electronic waste and information and technology goods. Their results
confirm the presence of an inverted U-shaped relationship between per capita GDP and
e-waste, thus confirming the validity of the EKC. More recent contributions such as
Khan and Ozturk (2021)[31] examine the EKC hypothesis under the moderating factor
of financial sector development for a set of 88 developing economies over the period
2000-2014. Controlling for average years of schooling and population size, the paper
reveals how financial sector development is associated with greater trade flows and for-
eign direct investment (FDI) flows. Employing generalized method of moments (GMM)
estimation techniques to tackle issues of endogeneity and serial correlation for dynamic
panels, the authors find the existence of the EKC between income and per capita emis-
sions. The strong dependence of current emissions on past emission levels detected in
the study further reflects the fact that the structure of economies evolve slowly through
time. The authors also find a positive relationship between population size and per
capita emissions, showing how increases in population exert a greater dependence on
society due to greater production and consumption of goods, thereby increasing total
emissions4. At the same time, the authors also validate the pollution haven hypothesis
(PHH), since their findings reveal how for developing economies, trade flows and FDI
flows are associated to greater emissions. Therefore, opening up the financial sector and
financial sector development can come with more emission-intensive products, produc-
tion processes and capital shifted to developing economies from other nations taking
advantage of lax environmental laws. Results in the paper also show that financial
sector development alone with greater credit access for environment-friendly technolo-
gies such as solar rooftops, for example, can help in reducing emissions. Muhammad
(2019)[36] detects similar results when analyzing 68 developed and emerging countries
in the Middle Eastern and North African (MENA) region for 2001 - 2017. Specifically,
the empirical results validate a relationship between increased energy consumption and
economic growth translating into higher emissions; at the same time, certain developing
economies managed nevertheless to adopt technological solutions which allowed them
to obtain gains in energy efficiency. Wang et al. (2023)[59], using a large dataset of
208 countries for the period 1990-2018, investigate the nexus between emissions, GDP,
human capital, trade openness, renewable energy consumption and natural resource
rents. The study confirms the presence of an inverted U-shaped relation between per
capita income and emissions at a global level with a turning point in income of approx-
imately 19,200 US$. The authors further show that increases in human capital and
trade openness increase carbon emissions before the turning point, but lead to a reduc-
tion after the turning point. At the same time, renewable energy decreases emission
intensity at a different pace before and after the turning point. Specifically, renewable
energy consumption decreases emissions in a more sustained fashion before the turning

4Papers by Guo et al., 2022 [20], Patiño et al., 2021[44] and Ma and Cai, 2019[34] using population,
affluence and technology models, for example, find the effect of population to exert a positive effect on
emissions.
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point than after it. When considering human capital, the relationship with emissions
is positive before reaching the turning point but negative thereafter. This is explained
by the fact that human capital accumulation leads to greater economic activity causing
greater emissions; however, as an economy progresses, there are increases in productiv-
ity, innovations in energy-efficient and low-carbon technologies due to human capital
accumulation which causes a decline in emissions. For reasons explained above, trade
openness enables countries to move pollution-intensive industries to other countries,
affecting environmental quality. But after the EKC turning point, trade openness may
indirectly contribute to emission reduction through economic exchanges. Finally, invest-
ing natural resource rents in modern technologies can promote economic development
and reduce emissions after the EKC turning point; however, in countries with weak
institutions, dependence on natural resource rents can cause further exploitation and
consumption of natural resources at the cost of negative environmental externalities.

3 Data and methodology

3.1 Data
In this study, we consider 43 emerging and developing economies (according to the In-
ternational Monetary Fund (2023)[24] classification) focusing on carbon dioxide (CO2)
emissions from fuel combustion, energy consumption and real GDP for the years 1998-
2019. We consider the IMF’s Fiscal Monitor Database as it takes a country’s monetary
and fiscal position into account towards prescribing consistent macroeconomic policies
leading to overall financial and price stability. This is especially important in our opin-
ion as it would truly reflect the development path of a country in recent times. On the
other hand, World Bank’s classification divides countries according to GNI per capita
using the World Bank Atlas Method (The World Bank (2023)[53]). To maintain com-
monality across sectors for which data is available for all variables, we use sector-level
data for the following four sectors of the economy: manufacturing and construction,
transportation, commercial and public, and agriculture, forestry and fishing5. In de-
tailing through sectors for the group of countries as a whole, we find the GDP shares of
manufacturing and commercial and public sectors to be the largest; for carbon dioxide
emissions, the shares are the greatest for the manufacturing and transportation sectors
followed by those of the residential sector. On the other hand, for energy consumption,
the shares are found to be highest for transportation, manufacturing and the residential
sectors6. The four sectors register substantial heterogeneity in terms of contribution to
GDP, energy consumption and carbon dioxide emissions. All in all, the results from

5Since the fishing component for this sector is zero (or negligible for a large number of countries), from
now onwards we refer to this sector as agriculture and forestry.

6We have data for six sectors on CO2 emissions from fuel combustion in millions of tonnes of CO2: Elec-
tricity and Heat, Manufacturing and Construction, Transportation, Residential, Commercial and Public,
Agriculture and Forestry (OECD, 2023[39]); five sectors for sectoral Gross Value Added in constant 2015
US$: Mining/Quarry and Utilities, Commercial and Public, Manufacturing and Construction, Transporta-
tion, Agriculture, Forestry and Fishing (UN Data, 2023[58]; UNSTATS, 2023[56]); five sectors for energy
consumption in Terajoules: Manufacturing and Construction, Transportation, Residential, Commercial and
Public, Agriculture and Forestry (UNSTATS, 2023[56]).
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Figs. 1-3 are self explanatory7,8; while the commercial and public sector denotes a
quite large contribution to GDP, the emission and energy shares are relatively low9; on
the other hand, the manufacturing and construction sector shows a significant contri-
bution for all the three variables, while the transportation sector exhibits high energy
consumption and emissions10. Finally, it is noteworthy noticing how the share of the
agriculture and forestry sector remains negligible in all cases.

For sectoral GDP, we use the gross value added (GVA) contribution for each sector.
The corresponding real GDP (in constant 2015 US $) data is obtained from UNSTATS
(2023)[56]. In terms of national accounting, household consumption is part of final
consumption expenditure which represents a further component of GDP. On the other
hand, as the GVAs for the other four sectors add to total value added in an economy, it
is not meaningful to have/add the GVAs for the manufacturing and construction, trans-
port, commercial and public and agriculture and forestry and the residential sector’s
share (household consumption expenditure) together. This distinction is even more im-
portant since our analysis is based at a sectoral level.11 Emission data is obtained from
the World Bank (2023)[52], while energy consumption data from UN Energy Balance
(2023)[55].

Descriptive statistics for our data are reported in Tab. 1. The list of the countries
considered can be found in the Appendix.

[TAB. 1 HERE]

In Tab. 2 we additionally report for each sector the average percentage annual
change in carbon and energy intensities over time. The latter are expressed, respec-
tively, as the ratio of CO2 emissions and energy consumption over GDP. It is noteworthy
noticing how all sectors registered a decrease in carbon intensity in the last considered
time period (2012-2019), with the commercial and public sector displaying the high-
est drop in magnitude. At the same time, in the same time period, energy intensity
increased for all sectors with the exception of the commercial and public sectors.

[TAB. 2 HERE]

7From now onwards, for the sake of simplicity, we will refer to the manufacturing and construction sector
simply as manufacturing sector.

8As mentioned in the Introduction section, in Figs. 2 and 3 we do not account for the residential sector,
which is the main contributor to energy consumption and carbon dioxide emissions. The contribution of
Electricity and Heat is also not included in the carbon emissions.

9In broad terms, this can be explained by the fact that in the last two decades, developing and emerging
economies have witnessed a sustained increased of the tertiary sector share to total GDP (UN Data, 2023[58]).
Consequently, this has also opened up jobs in IT, telecommunications and related industries which use
relatively energy-efficient technologies (Khan and Ozturk, 2021[31]).

10More people in developing countries have increased spending on private modes of transportation and
witnessed an increasing expansion in the manufacturing sector, leading to increases in energy usage (Guo et
al. (2022)[20]; Jeong and Kim (2013)[26]).

11Tajudeen et al. (2018)[51], employing the four sectors of our analysis and the residential sector (share
as per household consumption expenditure) do aggregate energy intensity decomposition at a country level
combining all the sectors together. Private personal consumption expenditure is taken as the share of the
residential sector in Jain (2023)[25].
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When disaggregating emissions by country (Fig. 4), it is not surprising to notice
how China and India remain among the major polluting economies. Cross-country
heterogeneity also emerges in relation to energy consumption (Fig. 5) and real GDP
(Fig. 6). When taking into account the share of various sectors in the total value
added12, we find that the overall share for Brazil in total world GDP is around 2%
over the years 1998 - 2019. For India and China, this share has doubled and tripled,
respectively, from around 1.5% to 3% and from around 6% to 18% from 1998 to 2019
(UNdata, 2023[58]; UNSTATS, 2023[56]). On the other hand, the overall shares of other
large emerging economies such as Mexico and Russia have grown to be around 1.5%
in recent years, while for Chile, Egypt, Indonesia, Malaysia, Saudi Arabia and South
Africa they have remained relatively stable (between 0.2% to 0.8% over the years).

[FIG. 1 HERE]

[FIG. 2 HERE]

[FIG. 3 HERE]

[FIG. 4 HERE]

[FIG. 5 HERE]

[FIG. 6 HERE]

3.2 Methodology
3.2.1 Energy Intensity Index

We employ index decomposition analysis to decompose energy intensity into an effi-
ciency index and an activity index. Specifically, we use the Fisher index decomposition
(Fisher, 1921[19]) for its desirable properties of providing perfect decomposition with-
out unexplained residuals, among others, as explained earlier (Tajudeen et al., 2018[51],
Ang, 2004[3]). Following Tajudeen et al. (2018)[51], aggregate energy intensity ent for
a country is given by:

ent =
Et

Yt
=

∑
j

(
Ejt

Yjt

)(
Yjt
Yt

)
=

∑
j

enjtsjt (1)

12Sectoral economic activity is defined as the share of a sector in the gross value added for an economy in
constant 2015 US$.
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where, given sector j, enjt represents sectoral energy intensity and sjt denotes the
sectoral share of real GDP (sectoral GVA contribution to real GDP). Et and Yt are total
energy consumption and total output or GDP; Ejt and Yjt denote energy consumption
and GVA contribution for sector j at time t respectively. Eq. (1) shows that the
aggregate energy intensity is the product of sectoral energy intensity and the sectoral
contribution to GDP. This implies that for a country as a whole, sector j’s improve-
ments/reductions in energy intensity and its contribution to total GDP (this aggregated
over all sectors of an economy) would determine how a country would be doing in terms
of its aggregate energy intensity. As an example, for developing economies such as India
and China, with a growing manufacturing and commercial and public sector and the
service sector, aggregate energy intensity may improve due to both sectors becoming
energy efficient and change in sectoral economic activities. However, since our analysis
is at a sectoral level, we only consider sectoral energy intensity and sectoral share in
GDP for the four sectors of the economy (manufacturing and construction, transport,
commercial and public and agriculture and forestry).

To arrive at an aggregate energy intensity index It, we divide the energy intensity
in year t, ent, by the energy intensity in some base year, en0, to get:

It =
ent

en0
=

∑
j enjtsjt∑
j enj0sj0

(2)

The following equations define the Laspeyres, Paasche and Fisher indexes:

Laspeyres : LEFF
t =

∑
j enjtsj0∑
j enj0sj0

;

LACT
t =

∑
j enj0sjt∑
j enj0sj0

(3)

Paasche : PEFF
t =

∑
j enjtsjt∑
j enj0sjt

;

PACT
t =

∑
j enjtsjt∑
j enjtsj0

(4)

Fisher : FEFF
t = (LEFF

t xPEFF
t )

1
2 ;

FACT
t = (LACT

t xPACT
t )

1
2 ;

(5)

where EFF and ACT stand for the efficiency and activity indexes respectively. The
aggregate energy intensity index It, which is the ratio of aggregate energy intensity in
year t to that in year 0, can thus be decomposed into an efficiency index and an
activity index. The efficiency index holds the sectoral GDP contributions constant
so that changes in energy intensity are only related to changes in energy efficiency.
Conversely, the activity index denotes changes in energy intensity which are due to
changes in sectoral economic activity.

From equation Eq. (2) and using Eqs. (3) to (5), the aggregate energy intensity
index can be written as the product of efficiency and activity indexes:

It =
ent

en0
= FEFF

t xFACT
t (6)

For this paper, the analysis at a sectoral level is carried out by first following the two
components of Eq. (1). Multiplying enjt with sjt for each sector and then dividing
by the same product for the base year gives us the energy intensity index for each
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sector j. Similarly, for the Laspeyres and Paasche indexes given in Eqs. (3) and (4)
above, we can derive the component for each sector; hence, the Fisher index can also
be obtained as in Eq. (5). It is straightforward to see that, for any given sector j
(thus ignoring the summation over all sectors), LEFF

t and PEFF
t would both equal

the ratio enjt

enj0
. Similarly, LACT

t and PACT
t would both equal the ratio sjt

sj0
which is

the relative sectoral economic activity in year t compared to that in the base year. It
follows that each of the Laspeyres and Paasche indexes would equal the Fisher index
according to Eq. (5). It can be seen that for each sector j, Eq. (2) holds as Ijt =

F
EFFj

t xF
ACTj

t . This proves that perfect decomposition exists. So, for sector j, a rise
in sectoral energy intensity relative to GVA share to the same ratio for the base year
would imply the sector becoming more energy intensive. This would entail decreases
in the efficiency index. Similarly, a rise in the sectoral economic activity share relative
to the energy intensity over the base year for sector j would entail an increase in the
activity index for the sector. A rise or fall in the efficiency index or in the activity
index can be associated with changes in emissions. Namely, decreasing activity (or
efficiency) indexes entail declining emissions, and therefore environmental amelioration.
On the contrary, increasing indexes entail increased emissions and therefore increased
environmental deterioration. In broad terms, changes in total emissions for a country
depend on the number of industries within each sector of the economy and, given
changes in the efficiency or activity indexes for the sectors, their relative fuel mix of
relatively dirty or clean fuel sources13.

In Tab. 3, we provide summary results for the energy intensity, efficiency, and ac-
tivity indexes at a sectoral level across 43 countries which is the subject of our analysis.
For this, we split the time period into three intervals: 1998-2004; 2005-2011; 2012-2019
with the base year as 2015. According to Tajudeen et al. (2018)[51], our period con-
sidered, 1998 - 2019 has been equally divided into three periods. The vertical axis in
Fig. 8 represents the coefficient of variation in decimal numbers. At a sectoral level as
in Fig. 8, Fig. 7 shows the average annual change as well as the average annual change
(cumulative) as a percentage.

From the graph of sectoral energy intensity decomposition (Fig. 7) and as depicted
in Tab. 3, we observe that the agriculture and forestry sector had greater fluctuations
among all three indexes: intensity, efficiency, and activity. For both the indexes of
intensity and efficiency, the average annual change for agriculture and forestry sector
is negative. The most negative values are seen for the period 2005-2011 for the in-
tensity and efficiency indexes. Similar results are again seen for the period 2005-2011
across these two indexes for the agriculture and forestry sector for the coefficient of
variation (Fig. 8). It is interesting to see that the coefficient of variation for all other
sectors, manufacturing and construction, transportation and commercial and public
for all three indexes of intensity, efficiency and activity decrease consistently over the
three periods. For the agriculture and forestry sector, only a steep decline is observed
between 2005-2011 to 2012-2019. Comparing the three indexes across sectors and the
index decomposition, it seems some countries may have been able to decrease their
energy intensity by improvement in energy efficiency while others may not have been
able to achieve this. Thus, further analysis at a country level is needed. It must also
be remembered that emerging economies, in their phase of economic growth, may have

13As stressed, for this study, we consider the total CO2 emissions from fuel combustion, whereas we do
not investigate the source of emissions for each sector or industry.
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drastic changes in economic structure leading to changes in patterns of demand for
energy and resulting emissions. As for the case of Colombia analyzed by Patiño et
al. (2021)[44], changes in the economy brought about by structural changes across the
transport, agriculture and services sector has effects on energy intensity and energy
efficiency.

[TAB. 3 HERE]

[FIG. 7 HERE]

[FIG. 8 HERE]

3.2.2 Model Specification

As mentioned above, our objective is to explore the dynamic relationship between emis-
sions, GDP and energy trends in developing and emerging economies relying upon the
Kuznets curve hypothesis as a core framework. Following Tajudeen et al. (2018)[51],
Boubellouta and Kusch-Brandt (2021)[10], and Puertas and Marti (2021)[46] we esti-
mate the following model specification:

ej,i,t = βj,1 ej,i,t−1 + βj,2 gdpj,i,t + βj,3 gdpj,i,t
2 + βj,4 actj,i,t + βj,5 actj,i,t

2 + βj,6 effj,i,t

+βj,7 effj,i,t
2 + ηj,i + ϵj,i,t

(7)

uj,i,t = ηj,i + ϵj,i,t (8)

ηj,i ∼ IID(0, ση
2), ϵj,i,t ∼ IID(0, σϵ

2), and E[ηj,iϵj,i,t] = 0 (9)

where j indicates sector, i indicates country and t stands for time [j = 1, 2, 3, 4; i =
1, 2, ....., 43; t = 1, 2, ....., 22]. ej,i,t represents sectoral CO2 emissions, gdp is sectoral real
GDP, and actj,i,t and effj,i,t are the two indexes for activity and efficiency, respectively.
All variables are in natural logarithms. Finally, ηj,i captures country specific effects for
each sector potentially correlated with the lag of the dependent variable, and ϵj,i,t is
the error term.

Given the presence of a lagged dependent variable in our model specification, the use
of ordinary pooled OLS (POLS) estimation may lead to biased coefficient estimates. In
broad terms, three alternative estimation methods are generally employed to estimate
the dynamic panel model specification of Eq. (7): Fixed Effects (FE); Difference GMM;
and System GMM. In dynamic contexts, GMM methods are generally preferred over
FE, since they address more effectively issues related to heteroskedasticity, endogeneity
and serial correlation, which are common phenomena encountered in panel data anal-
ysis (Roodman, 2009a[48]). Besides, if some explanatory variables do not tend to vary
significantly over time, GMM estimators can deal with this issue more effectively, since
they use both between and within variation for the determination of the coefficients
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rather than just the within variation as the FE does. Finally, as highlighted by Nick-
ell (1981)[38], besides dynamic panel bias, FE estimators can suffer of small-sample
bias when the number of time periods is reduced and the lagged dependent variable
denotes high degrees of persistence (Alonso-Borrego and Arellano, 1999[2]). Gener-
ally, employing GMM methods is particularly useful when the cross-section is larger
than the time period (Arellano and Bond, 1991[4]). Since our panel data consist of 43
cross-sectional units (43 individual countries) and a relatively smaller time period of
22 years (from 1998 to 2019), the GMM estimator represents a suitable technique to
estimate our model specification. To eliminate the unobserved effects, a first difference
transformation of Eq. (7) can be performed so that:

∆ej,i,t = βj,1 ∆ej,i,t−1 + βj,2 ∆gdpj,i,t + βj,3 ∆gdpj,i,t
2 + βj,4 ∆actj,i,t + βj,5

∆actj,i,t
2 + βj,6 ∆effj,i,t + βj,7 ∆effj,i,t

2 +∆ϵj,i,t
(10)

where ∆ is the first difference operator. Taking first difference in Eq. (8) yields:

∆uj,i,t = ∆ηj,i+∆ϵj,i,t ⇒ uj,i,t−uj,i,t−1 = (ηj,i−ηj,i)+(ϵj,i,t−ϵj,i,t−1) ⇒ ∆uj,i,t = ϵj,i,t−ϵj,i,t−1

(11)
Difference GMM estimation can be implemented after the first differentiation of the

data has eliminated the fixed effects components (Roodman, 2009b[47]). However, the
first differencing might produce a source of bias since the differenced error term could
be correlated with the lagged emissions variable. To overcome this issue, Arellano and
Bover (1995)[5] and Blundell and Bond (1998)[9] proposed a System GMM estimation.
The latter employs two equations: one first-differenced (where the explanatory vari-
ables are instrumented by their lagged levels) and one in levels (where variables are
instrumented by their lagged first difference). Specifically, variables in differences are
instrumented using the lags of their own levels, whereas variables in levels are instru-
mented using the lags of their own difference. As highlighted by Blundell and Bond
(1998)[9], the first differenced moment conditions in Difference GMM are augmented
by level moment conditions in System GMM for more efficiency in estimation14. For
this analysis, we use both two-step Difference and System GMM estimators, which
result to be more robust against misspecification and endogeneity in the presence of
pseudo time-invariant explanatory variables15. To ensure the validity of the economet-
ric estimates, we conduct a series of additional robustness checks. First, we address
potential endogeneity issues of our independent variables by instrumenting them with
a two-lag instrumental matrix used as an instrument for the first-differenced model.
Secondly, we additionally run a one-step System and Difference GMM for all of our
model specifications.

14At the same time, System GMM requires the additional orthogonality condition for which the differences
used as instruments are uncorrelated with the error term.

15The two-step procedure, by using the heteroscedastic weight matrix and the instruments in levels, reduces
the loss of information, but it also introduces the risk of overidentification; in order to avoid instrument
proliferation we follow Roodman (2009a[48], 2009b[47]) by only using two lags in the estimation procedure.
The bias in the two-step standard errors is corrected with the Windmeijer (2005)[62] finite sample correction
procedure.
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4 Empirical findings

4.1 Unit Root and Panel Cointegration tests
Previous to performing our econometric estimates, we run different panel unit root tests
to validate the hypothesis of stationarity within the data. In the literature, both first-
and second-generation unit root tests are generally employed to address stationarity
concerns. Among first-generation tests, the Harris Tzavalis (HT) test has been largely
utilized since it provides a good fit for the data in case of balanced panels (Baltagi,
2008[7]). On the other hand, a main weakness of first-generation tests stems from the
fact that the latter do not consider cross-sectional dependence among error terms, which
if present might lead to biased and inconsistent test statistics. To cope with such issue,
we employ augmented Dickey Fuller (CADF) and cross-sectionally Im Pesaran Shin
(CIPS) second-generation unit root tests, that are robust to cross-sectional dependence
among disturbances and cross-sectional units (Pesaran, 2007[45]; Im et al., 2003[23]). To
check preemptively for the presence of cross-sectional dependence, we run both Pesaran
and Friedman cross-sectional dependence tests. The corresponding test statistics are,
respectively, 12.346 (p < 0.01) and 27.746 (p < 0.05), thus indicating the presence of
cross-sectional dependence in our data. In Tab. 4 we report CADF and CIPS test
statistics, together with HT results. When considering CADF and CIPS test statistics,
the null hypothesis of non-stationarity is not rejected for several variables in our dataset.
However, all variables become stationary after taking the first difference.

[TAB. 4 HERE]

Since not all our variables are stationary in levels, a long-term significant relation-
ship among GDP, energy, and emissions exists in the presence of cointegration among
the latter. To test for variables’ cointegration, we employ three cointegration tests:
the Kao’s residual, the Pedroni, and the Westerlund cointegration tests16. The test
statistics for the cointegration tests are displayed in Tab. 5.

[TAB. 5 HERE]

From Tab. 5, the null hypothesis of no cointegration is rejected by all the tests
statistics, indicating the statistical meaningfulness of coefficient estimates for emissions,
growth and energy measures.

4.2 Econometric estimates
Tabs. 6-9 report the econometric estimates for each sector. From the tables, the lagged
levels of carbon dioxide emissions denote a positive impact on the current levels of

16The Kao’s residual test is generated by a Monte-Carlo process and is particularly indicated for reduced
time dimensions. The null hypothesis of absence of cointegration among the data is evaluated using both
Dickey Fuller (DF) and Augmented Dickey Fuller (ADF) type tests (Kao, 1999[29]).
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emissions. These findings mirror the results of recent contributions studying emission
behaviors in developing countries, revealing how past emissions do affect current emis-
sion levels across different sectors of the economy (Wang et al., 2023[60]; Wenbo and
Yan, 2018[61]; Ayesu, 2023[6]; Oryani et al., 2021[42]; Oliveira et al., 2022[40]). This
result from our analysis emerging across all sectors might indicate that unsuccessful
policy efforts in emerging economies aiming at curtailing emissions can translate into
negative spillovers effects in terms of increase in current CO2 emissions. When consid-
ering GDP growth, this exerts a linear positive effect on emissions in the manufacturing
and transportation sectors17. Conversely, an inverted U-shaped relationship emerges
when considering the commercial and public sector, as seen in Tab. 8 and Tab. 12,
with a turning point of 316367 (1,000 real US$). Finally, a non significant impact is
detected for the agriculture and forestry sector. Our findings corroborate those from
Ru et al. (2018)[49] who find a linear relationship between per capita CO2 emissions
and per capita income for a large group of 199 countries (high, middle and low income
countries) for the industry and transportation sectors for the years 1980-2014. How-
ever, future projections about total emissions and income relationship by the authors
using integrated assessment models (IAMs) show a gradual decline in emissions for the
transportation sector. This may be due to the presence of developed economies showing
stronger environmental preferences and better access to cleaner modes of transporta-
tion. From Tab. 7, we find a mild positive and convex relationship reflecting the need
to greater transportation in developing economies with growing incomes. Lin et al.,
2014[32] analyzing sectoral value additions, energy consumption and carbon emissions
for the manufacturing sector in China, find that a long-run relationship between the
variables does exist. Specifically, carbon emissions adjust to a long-run equilibrium as
caused by changes in shares of the manufacturing sector and energy consumption. How-
ever, the dearth of a causal relation running from energy consumption and emissions
to growth in the manufacturing sector suggests that there remains reduction poten-
tial for energy consumption in the manufacturing sector, which would also lead to less
emissions. The positive relationship we find between emissions and manufacturing and
construction value added is further reiterated by Adjei-Mantey and Adams (2023)[1]
who also find a long-run positive relationship between industrial growth and increased
emissions. An inverted U-shape (EKC) relation is also found between GDP growth
and the share of manufacturing value added for a large group of industrialized and
developing and emerging industrial economies by Halkos et al. (2021)[21]. In the cur-
rent literature, studies analyzing the decoupling of economic development from carbon
emissions generated from commercial and public buildings remain scant. Our empiri-
cal results support the findings of recent contributions adopting index decomposition
analysis to investigate the nexus between development and emissions generation in the
tertiary sector. Particularly, Chen et al. (2022)[14] and Ma and Cai (2019)[34] find out
how sustained development in commercial and public buildings in China has been fol-
lowed by an effective low carbon development roadmap, thus confirming the existence of
an inverted U-shaped relationship (EKC). Wenbo and Yan (2018)[61] further argue how
the implementation of environmental regulations has helped China to reach its peak
of carbon emission intensity (measured as the ratio of emissions to GDP) and better
regulations would help the country reach its goal of peaking total carbon emissions by

17The robustness checks in Tab. 11 validate the linear impact of GDP growth on emissions for the
transportation sector.
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2030. The effect of regulations have been stronger in the more developed eastern region
of China, possibly again showing the inverse relation between emissions and growth
after a certain income level with greater access to energy-efficient technologies.

When considering the efficiency and activity indexes, interesting results emerge.
The manufacturing sector registers an inverted U-shaped relationship for both the two
indexes, suggesting how both improvements in energy efficiency and the reconfigura-
tion of intra-sectoral economic activities played a role in generating energy savings after
some threshold values. Conversely, the transportation sector registers adverse struc-
tural shifts in environmental outcomes captured by a U-shaped relationship between
the activity index and emissions. As seen in Tab. 7 and Tab. 11, we also find an
inverted U-shape relationship in certain cases. When energy intensity can be expressed
as a decomposition between activity and efficiency indexes at a sectoral level, our re-
sults follow Patiño et al. (2021)[44]; specifically, the authors, examining the Colombian
case for the period 1975-2016, show how decreases in aggregate energy intensity in the
transportation sector are driven mostly by sectoral energy intensity effects. The au-
thors also find sectoral shares (activity index) for transportation and industry to be
increasing (and decreasing, respectively) over the years and having a large impact on
the aggregate energy intensity levels. This can be explained by a greater percentage of
the population having access to private transportation needs and the development of
public/mass transit systems for developing and emerging economies as a whole. While
this can lead to less polluting and energy efficient systems for countries after incomes
crossing a certain threshold, our results for a large group show carbon emissions to
decrease and then increase. Patiño et al. (2021)[44] show carbon dioxide emissions to
fall largely due to declines in energy intensity and as shown by Jain (2023)[25], en-
ergy intensity improvements and energy savings have been observed in India during
2011-2019 for the industrial sector as a whole. However, the activity shares for this
sector has also increased over the years. Finally, a U-shaped relationship also emerges
between the efficiency index and emissions for the commercial and public sector. This
result is in line with Patiño et al. (2021)[44] who also show sectoral energy intensity to
increase in recent years for the service sector in Colombia. Studies such as by Ferrada
et al. (2022)[18], using index decomposition analysis, suggest how in the commercial
and public sector, the emergence of more efficient, cleaner and cost-effective end-use
technologies still lags behind compared to developed countries. Nevertheless, this gap
is expected to shrink in the next two decades leading to emissions curtails in the ter-
tiary sector (Jain, 2023[25]; Patiño et al., 2022[44]). For the agriculture and forestry
sector, no significant relationships emerge for emissions and the two energy indexes.
Conversely, energy efficiency gains in the transportation sector have been registered in
different countries thanks to a deeper penetration of renewable technologies such as
biofuels, hybrid vehicles, and lithium-ion batteries (Junior et al., 2022[28]; Dharmala et
al., 2022[16]; Feng and Wang., 2018[17]18). Robustness checks in Tabs. 10-13 validate
our empirical findings.

[TAB. 6 HERE]

18Feng and Wang, 2018[17], in analyzing the transportation sector, find evidence of a decrease in energy
efficiency gains followed by a subsequent increase, thus providing evidence for the existence of a U-shaped
curve in technological amelioration.
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[TAB. 7 HERE]

[TAB. 8 HERE]

[TAB. 9 HERE]

[TAB. 10 HERE]

[TAB. 11 HERE]

[TAB. 12 HERE]

[TAB. 13 HERE]

5 Conclusion
Given the sector-specific nature of pollutant sources, exploring EKC patterns at the
sectoral level becomes relevant for the formulation of effective carbon-neutral strate-
gies. In this paper, we investigate the joint impact of sectoral economic growth and
energy-related measures on carbon dioxide emissions in order to understand such pat-
terns. For the analysis, we consider a sample of 43 emerging and developing economies
from 1998 to 2019. We employ index decomposition analysis to decompose the energy
intensity index into an efficiency index and activity index using the Fisher index de-
composition. The Fisher index lends itself to certain desirable properties such as giving
perfect decomposition without unexplained residuals. Our empirical findings reveal
how energy efficiency, switches in economic activities, and contribution of GDP growth
vary substantially among sectors, which translates into heterogeneous responses to CO2
emissions. Compared to previous sectoral studies in the literature, we find a linear pos-
itive impact of growth on carbon dioxide emissions for all sectors with the exception of
the commercial and public sector (and a non-significant effect for the agriculture and
forestry sector). Since the contribution to GDP of the tertiary industry is expanding at
an increasing rate in developing and emerging economies, maintaining carbon neutral-
ity remains an essential task for global emission abatement targets (UNSDG, 2023[57]).
In the light of this, policies should be formulated considering the presence of reduced
energy efficiency gains in the tertiary industry. In this regard, effective policy strate-
gies might focus on green building development; e.g., encouraging the usage of green
building materials and equipment (Chen et al., 2015[15]; Zuo and Zhao, 2014[65]) or
the application of renewable energy sources such as solar panels (Liu et al., 2017[33]).
At the same time, considering the green supply chain of civil and commercial construc-
tions (Ma and Cai, 2019[34]), measures such as corporate credit ratings and building
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product ratings might prove to be effective in promoting building energy efficiency. On
the other hand, being the manufacturing and transportation sectors large contributors
to emissions from fuel combustion for countries considered in our study, policies should
be undertaken to optimize energy efficiency in such sectors. Studies for a large group of
industrialized and developing economies (Halkos et al., 2021[21]) and China (Lin et al.,
2014[32]) analyzing the manufacturing sector demonstrate how emission reduction mea-
sures can be undertaken without affecting long term growth. Since energy consumption
is associated with greater emissions, this study suggests how reducing energy intensity
and adopting energy efficiency measures would reduce emissions while not affecting
long-run growth in the manufacturing sector. In this context, the general reduction in
manufacturing energy intensity, reasonably driven by economic growth and increased
energy prices, has been providing incentives to invest in new technology and industrial
processes (Sadath and Acharya, 2015[50]). In line with Ma and Cai (2019)[34], we ar-
gue that encouraging income tax reductions and exemptions for green energy companies
might serve as a valuable policy tool in order to promote long-run carbon neutrality in
the industrial sector.

On the other hand, the reconfiguration of economic activities within the transporta-
tion sector appears to have negatively contributed to emission abatement. In line with
Feng and Wang (2018)[17] and Guo et al. (2022)[20], while the contribution of the
transportation sector to GDP might be large in emerging economies such as China,
measures to reduce emissions in the transportation sector might be more effective in
regions with higher levels of development. At the same time, the implementation of
such measures might be difficult in view of managerial and other institutional failures.
Related increase in emissions in the transportation sector associated with GDP growth
might also be fostered by a high correlation between fuel consumption and income in
emerging economies across income levels (Ru et al., 2018[49]). Hence, an increase in
fuel prices (causing an increase in the transportation sector’s price index), if not as-
sociated with large increases in per capita income levels, may reduce carbon emissions
from this sector (Guo et al., 2022[20]). Technological solutions often advocated to cope
with increased emissions in the transportation sector generally include vehicle electri-
fications and usage of biofuels, although both face challenges in developing economies
(Moreira et al., 2022[35]). In this regard, if the imposition of eco-standards for new
vehicle emissions and fuels can be seen as a more cumbersome option for developing
countries, retrofitting and replacement of high-emission older vehicles might represent
a more viable solution (Kaygusuz et al., 2012[30]; Ong et al., 2012[41]; Zhou et al.,
2010[64]).

All in all, the findings from our study suggest how improving energy efficiency
and strategically shifting economic activities among sectors might have the potential
to reduce CO2 emissions. As such, it becomes imperative for policymakers in de-
veloping countries to prioritize enhancing energy efficiency and consider transitioning
high-energy intensity sectors to a lower level. Although of interest, our study has some
limitations; in primis, it lacks a proper comprehensive approach required in order to
suggest effective decarbonization policies. For instance, in our analysis we considered
output growth as the only economic factor outside the energy matrix; nonetheless, due
to lack of data availability, we could not take into account important determinants
such as the costs of distribution of energy resources or the utility of agents. Indeed,
our simple framework does not address the issue, for example, that firms operating in

17



the commercial and public sector might not be willing to invest in more expensive but
efficient technologies (e.g., heat pumps). In this regard, to achieve successful adop-
tion outcomes, either subsidies or financing mechanisms should be adopted by policy
makers. We leave these issues for future research.

6 Appendix

6.1 Countries considered in our study
Argentina, Azerbaijan, Bahrain, Bolivia, Botswana, Brazil, Bulgaria, Chile, China
(incl. Hong Kong), Colombia, Costa Rica, Croatia, Egypt, Hungary, India, Indonesia,
Iran, Iraq, Jamaica, Kazakhstan, Kuwait, Libya, Malaysia, Mexico, Morocco, Pakistan,
Philippines, Poland, Qatar, Romania, Russia, Saudi Arabia, South Africa, Sri Lanka,
Turkey, Thailand, Trinidad and Tobago, Tunisia, Turkmenistan, Ukraine, United Arab
Emirates, Uruguay, Vietnam.
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Table 2: Carbon and energy intensity trends by sector.

Sector Years Carbon intensity
(average annual change)

Energy intensity
(average annual change)

Manufacturing (1998-2004) -30.70 % -6.80 %
and construction (2005-2011) -35.09 % -24.14 %

(2012-2019) -18.53 % 15.23 %
Transportation (1998-2004) -3.12 % -16.49 %

(2005-2011) -14.17 % -40.05 %
(2012-2019) -10.30 % 6.56 %

Commercial (1998-2004) -23.55 % -12.75 %
and Public (2005-2011) 166.02 % -17.12 %

(2012-2019) -48.53 % -16.15 %
Agriculture (1998-2004) 8.90 % 38.63 %
and Forestry (2005-2011) -56.63 % 20.11 %

(2012-2019) -12.13 % 7.30 %
Note: Carbon intensity is expressed in million tonnes of CO2 per unit of GDP.
Energy intensity is expressed in terajoules per unit of GDP.
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Table 3: Summary statistics of energy indexes.

Index Sector Years Mean S.D. Min Max Coefficient
of variation

Average annual
change

Average annual
change (cumulative)

Intensity
Manufacturing (1998-2004) 1.57 0.81 0.38 5.56 0.51 -3.97% -3.97%
and construction (2005-2011) 2.79 0.38 0.41 2.61 0.14 -3.87% -3.92%

(2012-2019) 0.99 0.15 0.52 1.85 0.15 -1.66% -3.17%
Transportation (1998-2004) 1.16 0.33 0.49 2.78 0.28 -0.47% -0.47%

(2005-2011) 1.06 0.22 0.31 2.42 0.21 -1.06% -0.77%
(2012-2019) 1.00 0.13 0.32 1.70 0.13 -0.37% -0.77%

Commercial (1998-2004) 0.67 0.46 0.00 1.91 0.69 0.61% -2.94%
and Public (2005-2011) 1.05 0.66 0.02 5.29 0.63 8.71% 0.61%

(2012-2019) 1.02 0.22 0.59 3.17 0.22 -0.81% 4.66%
Agriculture (1998-2004) 4.67 11.80 0.05 79.31 2.53 -0.24% 2.84%
and Forestry (2005-2011) 2.93 7.58 0.17 57.81 2.59 -36.25% -0.24%

(2012-2019) 1.26 1.76 0.07 21.02 1.40 -8.36% -0.24%
Efficiency

Manufacturing (1998-2004) 1.69 1.45 0.30 10.47 0.86 -7.06% -7.06%
and construction (2005-2011) 1.17 0.39 0.29 2.54 0.33 -3.95% -5.51%

(2012-2019) 0.99 0.14 0.50 1.60 0.14 -0.72% -3.91%
Transportation (1998-2004) 1.53 0.70 0.53 4.30 0.46 -3.11% -3.11%

(2005-2011) 1.19 0.41 0.34 3.96 0.34 -3.26% -3.18%
(2012-2019) 1.00 0.17 0.34 2.27 0.17 -1.17% -2.51

Commercial (1998-2004) 0.71 0.56 0.00 3.95 0.78 0.17% 0.17%
and Public (2005-2011) 1.09 0.77 0.02 6.32 0.70 8.70% 4.43%

(2012-2019) 1.02 0.23 0.59 3.05 0.22 -1.12% 2.58%
Agriculture (1998-2004) 3.72 9.61 0.05 58.52 2.58 7.96% 7.96%
and Forestry (2005-2011) 2.71 7.39 0.13 65.02 2.73 -35.89% -13.96%

(2012-2019) 1.27 1.74 0.08 20.80 1.37 -7.38% -11.77%
Activity

Manufacturing (1998-2004) 1.08 0.50 0.18 4.63 0.46 -0.09% -0.09%
and construction (2005-2011) 1.08 0.20 0.51 2.05 0.18 -0.25% -0.17%

(2012-2019) 1.00 0.09 0.76 1.67 0.08 -0.91% -0.42%
Transportation (1998-2004) 0.85 0.34 0.25 3.17 0.40 1.10% 1.10%

(2005-2011) 0.93 0.17 0.29 1.49 0.18 0.79% 0.94%
(2012-2019) 1.01 0.08 0.55 1.43 0.08 0.87% 0.92%

Commercial (1998-2004) 0.98 0.10 0.41 1.23 0.10 -0.03% -0.03%
and Public (2005-2011) 0.97 0.07 0.63 1.33 0.07 4.68% 2.33%

(2012-2019) 1.00 0.04 0.65 1.30 0.04 0.25% 1.63%
Agriculture (1998-2004) 1.41 0.37 0.79 2.79 0.26 -1.75% -1.75%
and Forestry (2005-2011) 1.17 0.25 0.61 2.71 0.21 -2.59% -2.17%

(2012-2019) 1.00 0.11 0.60 1.69 0.11 -0.85% -1.73%

Note: S.D.= Standard deviation, Min = Minimum value, Max = Maximum value.
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Table 6: Manufacturing and construction sector.

(1) (2) (3) (4)
Sys-GMM Diff-GMM2 FE POLS

l.e 0.557∗∗∗ 0.465∗∗∗ 0.610∗∗∗ 0.947∗∗∗
(0.013) (0.011) (0.027) (0.011)

gdp 0.505∗ 0.397∗∗ 0.125 0.036
(0.277) (0.195) (0.167) (0.063)

gdp2 -0.006 -0.007 0.005 0.001
(0.013) (0.009) (0.008) (0.003)

eff 0.419∗∗∗ 0.297∗∗∗ 0.273∗∗∗ 0.076∗∗
(0.029) (0.016) (0.047) (0.033)

eff2 -0.033∗∗∗ -0.024∗∗∗ -0.020∗∗∗ -0.007∗
(0.005) (0.004) (0.005) (0.004)

act 0.459∗∗∗ 0.480∗∗∗ 0.350∗∗∗ -0.034
(0.122) (0.053) (0.124) (0.105)

act2 -0.068∗∗∗ -0.096∗∗∗ -0.054∗∗ 0.013
(0.022) (0.007) (0.026) (0.024)

Hansen test 40.990 36.802
AR(1) -1.595 -1.561
AR(2) 0.557 0.355
N. of instruments 237 216
Observations 886 843 886 886
Note: Standard errors in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 7: Transportation sector.

(1) (2) (3) (4)
Sys-GMM Diff-GMM2 FE POLS

l.e 0.281∗∗∗ 0.549∗∗∗ 0.615∗∗∗ 0.909∗∗∗
(0.017) (0.122) (0.025) (0.013)

gdp 0.394∗∗∗ 0.717∗∗ 0.443∗∗∗ 0.042
(0.061) (0.280) (0.102) (0.039)

gdp2 0.017∗∗∗ -0.010 -0.002 0.002
(0.003) (0.015) (0.005) (0.002)

eff 0.291∗∗∗ 0.380∗∗∗ 0.318∗∗∗ 0.123∗∗
(0.026) (0.142) (0.066) (0.050)

eff2 -0.020∗∗∗ -0.039 -0.036∗∗∗ -0.021∗
(0.005) (0.026) (0.013) (0.012)

act -0.669∗∗∗ -0.528∗∗ -0.327∗∗ -0.047
(0.050) (0.215) (0.152) (0.115)

act2 0.139∗∗∗ 0.120∗ 0.089∗∗ 0.013
(0.010) (0.061) (0.044) (0.037)

Hansen test 36.386 42.252
AR(1) -1.371 -1.357
AR(2) 1.269 1.162
N. of instruments 237 236
Observations 897 854 897 897
Note: Standard errors in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 8: Commercial and public sector.

(1) (2) (3) (4)
Sys-GMM Diff-GMM2 FE POLS

l.e 0.390∗∗∗ 0.055 0.551∗∗∗ 0.920∗∗∗
(0.062) (0.038) (0.032) (0.015)

gdp 1.225∗∗∗ 0.795∗∗∗ 0.120 0.183∗∗∗
(0.133) (0.113) (0.150) (0.046)

gdp2 -0.028∗∗∗ -0.018∗∗∗ -0.003 -0.004∗∗∗
(0.003) (0.003) (0.003) (0.001)

eff -1.723∗∗∗ -0.195∗ 0.044 -0.246∗
(0.321) (0.110) (0.161) (0.141)

eff2 0.896∗∗∗ 0.222∗∗∗ 0.135 0.184∗∗
(0.149) (0.041) (0.085) (0.077)

act 14.247∗∗ -9.314 8.420 -6.114
(6.118) (6.053) (5.241) (4.435)

act2 -8.466∗∗∗ 3.114 -4.006 3.094
(3.186) (2.876) (2.627) (2.230)

Hansen test 23.400 24.088
AR(1) -2.763 -1.867
AR(2) -0.499 -1.417
N. of instruments 237 216
Observations 610 565 610 610
Note: Standard errors in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 9: Agriculture and forestry sector.

(1) (2) (3) (4)
Sys-GMM Diff-GMM2 FE POLS

l.e 0.668∗∗∗ 0.472∗∗∗ 0.702∗∗∗ 0.956∗∗∗
(0.047) (0.035) (0.027) (0.014)

gdp -0.640 -0.069 -1.195∗ 0.062
(1.138) (1.912) (0.716) (0.115)

gdp2 0.023 -0.021 0.050 -0.001
(0.061) (0.100) (0.037) (0.006)

eff 0.003 0.097∗∗∗ 0.057∗∗∗ -0.005
(0.009) (0.016) (0.012) (0.009)

eff2 0.000 -0.001∗∗∗ -0.000∗ 0.000
(0.000) (0.000) (0.000) (0.000)

act 1.287∗∗ 0.747 0.169 -0.114
(0.571) (0.707) (0.452) (0.417)

act2 -0.329 -0.218 -0.042 0.041
(0.225) (0.238) (0.153) (0.146)

Hansen test 24.481 30.794
AR(1) -2.756 -3.121
AR(2) 0.654 0.582
N. of instruments 237 216
Observations 665 624 665 665
Note: Standard errors in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 10: Manufacturing and construction sector.

(1) (2) (3) (4) (5)
Sys-GMM Sys-GMM Sys-GMM Sys-GMM Diff-GMM2

(gdp endog.) (eff endog.) (act endog.) (one-step) (one-step)
l.e 0.673∗∗∗ 0.650∗∗∗ 0.664∗∗∗ 0.553∗∗∗ 0.467∗∗∗

(0.008) (0.015) (0.017) (0.027) (0.033)

gdp 0.075 0.268∗ 0.406∗∗∗ 0.573∗∗ 0.480
(0.125) (0.174) (0.140) (0.276) (0.350)

gdp2 0.010∗ 0.004 -0.005 -0.010 -0.013
(0.006) (0.008) (0.007) (0.013) (0.016)

eff 0.335∗∗∗ 0.349∗∗∗ 0.350∗∗∗ 0.421∗∗∗ 0.310∗∗∗
(0.048) (0.024) (0.016) (0.057) (0.067)

eff2 -0.024∗∗∗ -0.023∗∗∗ -0.025∗∗∗ -0.035∗∗∗ -0.031∗∗∗
(0.004) (0.003) (0.002) (0.008) (0.008)

act 0.388∗∗∗ 0.399∗∗∗ 0.343∗∗∗ 0.402∗∗ 0.491∗∗∗
(0.083) (0.079) (0.099) (0.191) (0.189)

act2 -0.049∗∗∗ -0.056∗∗∗ -0.043 -0.058 -0.095∗∗
(0.018) (0.016) (0.028) (0.042) (0.041)

Hansen test 42.287 40.630 40.748 555.142 380.329
AR(1) -1.601 -1.601 -1.609 -2.069 -13.408
AR(2) 0.552 0.566 0.565 0.661 0.430
N. of instruments 470 470 470 237 216
Observations 886 886 886 886 843
Note: Standard errors in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 11: Transportation sector.

(1) (2) (3) (4) (5)
Sys-GMM Sys-GMM Sys-GMM Sys-GMM Diff-GMM2

(gdp endog.) (eff endog.) (act endog.) (one-step) (one-step)
l.e 0.518∗∗∗ 0.583∗∗∗ 0.560∗∗∗ 0.259∗∗∗ 0.567∗∗∗

(0.022) (0.037) (0.006) (0.030) (0.124)

gdp 0.443∗∗ 0.591∗∗∗ 0.579∗∗∗ 0.427∗∗∗ 0.700∗∗
(0.176) (0.145) (0.113) (0.150) (0.292)

gdp2 0.001 -0.011 -0.008 0.016∗∗ -0.011
(0.008) (0.008) (0.005) (0.008) (0.015)

eff 0.221∗∗∗ 0.106∗ 0.245∗∗∗ 0.275∗∗∗ 0.374∗∗
(0.059) (0.083) (0.024) (0.082) (0.154)

eff2 -0.008 0.014 -0.018∗∗∗ -0.017 -0.038
(0.015) (0.019) (0.005) (0.021) (0.028)

act -0.350∗∗∗ -0.328∗∗∗ -0.325∗∗∗ -0.715∗∗∗ -0.496∗∗∗
(0.133) (0.116) (0.089) (0.185) (0.175)

act2 0.058∗ 0.073∗∗∗ 0.082∗∗∗ 0.144∗∗ 0.112∗∗
(0.042) (0.027) (0.023) (0.063) (0.053)

Hansen test 36.024 33.307 36.560 339.718 109.461
AR(1) -1.364 -1.395 -1.372 -2.001 -1.442
AR(2) 1.193 1.220 1.194 2.200 1.249
N. of instruments 470 470 470 237 236
Observations 897 897 897 897 854
Note: Standard errors in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 12: Commercial and public sector.

(1) (2) (3) (4) (5)
Sys-GMM Sys-GMM Sys-GMM Sys-GMM Diff-GMM2

(gdp endog.) (eff endog.) (act endog.) (one-step) (one-step)
l.e 0.595∗∗∗ 0.567∗∗∗ 0.674∗∗∗ 0.415∗∗∗ 0.126∗∗∗

(0.044) (0.030) (0.043) (0.038) (0.048)

gdp 1.010∗∗∗ 0.816∗∗∗ 0.514∗∗∗ 1.144∗∗∗ 0.487∗∗∗
(0.181) (0.119) (0.100) (0.105) (0.157)

gdp2 -0.023∗∗∗ -0.018∗∗∗ -0.012∗∗∗ -0.026∗∗∗ -0.011∗∗∗
(0.004) (0.003) (0.002) (0.002) (0.004)

eff -1.193∗∗∗ -0.511∗ -0.497∗ -0.723∗∗∗ -0.202
(0.431) (0.354) (0.327) (0.175) (0.181)

eff2 0.662∗∗∗ 0.402∗∗ 0.395∗∗∗ 0.422∗∗∗ 0.205∗∗
(0.194) (0.158) (0.130) (0.093) (0.091)

act 8.172 -9.665 -9.494 -1.164 2.640
(6.672) (7.764) (8.670) (5.374) (4.731)

act2 -4.504 4.741 4.432 -0.021 -1.665
(3.328) (3.899) (4.312) (2.705) (2.372)

Hansen test 32.754 35.711 35.313 366.047 298.272
AR(1) -3.293 -3.241 -3.337 -3.676 -7.195
AR(2) -0.452 -0.496 -0.431 -0.672 -1.393
N. of instruments 461 462 462 237 216
Observations 610 610 610 610 565
Note: Standard errors in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Table 13: Agriculture and forestry sector.

(1) (2) (3) (4) (5)
Sys-GMM Sys-GMM Sys-GMM Sys-GMM Diff-GMM2

(gdp endog.) (eff endog.) (act endog.) (one-step) (one-step)
l.e 0.805∗∗∗ 0.817∗∗∗ 0.850∗∗∗ 0.768∗∗∗ 0.458∗∗∗

(0.071) (0.036) (0.030) (0.029) (0.039)

gdp -0.873 -1.978 -2.332∗ -2.127∗∗∗ -0.011
(2.245) (1.767) (1.355) (0.594) (1.451)

gdp2 0.046 0.107 0.121∗ 0.106∗∗∗ -0.031
(0.117) (0.089) (0.067) (0.031) (0.075)

eff -0.001 -0.013∗ -0.002 -0.011 0.081∗∗∗
(0.005) (0.007) (0.005) (0.017) (0.019)

eff2 0.000∗∗ 0.000∗∗∗ 0.000 0.000 -0.001∗∗∗
(0.000) (0.000) (0.000) (0.000) (0.000)

act -0.056 0.288 -0.576 0.650 0.907
(0.640) (0.729) (0.757) (0.809) (0.711)

act2 0.121 0.030 0.356 -0.051 -0.280
(0.224) (0.265) (0.318) (0.299) (0.259)

Hansen test 30.426 29.575 26.737 411.493 344.345
AR(1) -3.009 -3.135 -3.233 -3.104 -10.500
AR(2) 0.680 0.668 0.693 0.671 0.970
N. of instruments 451 451 451 237 216
Observations 665 665 665 665 624
Note: Standard errors in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01.
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Figure 1: [COLOR FIGURE] Contribution to GDP by sector (%).
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Figure 2: [COLOR FIGURE] Total energy consumption by sector (%).
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Figure 3: [COLOR FIGURE] Total CO2 emissions by sector (%).
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Figure 7: [COLOR FIGURE] Energy intensity and its decomposition by sector- part I.

Figure 8: [COLOR FIGURE] Energy intensity and its decomposition by sector - part II.

44



 

DOCUMENTS DE TRAVAIL GREDEG PARUS EN 2024
GREDEG Working Papers Released in 2024

2024-01 Davide Antonioli, Alberto Marzucchi, Francesco Rentocchini & Simone 
  Vannuccini
  Robot Adoption and Product Innovation
2024-02 Frédéric Marty 
  Valorisation des droits audiovisuels du football et équilibre économique des clubs professionnels :  
  impacts d’une concurrence croissante inter-sports et intra-sport pour la Ligue 1 de football
2024-03 Mathieu Chevrier, Brice Corgnet, Eric Guerci & Julie Rosaz
  Algorithm Credulity: Human and Algorithmic Advice in Prediction Experiments
2024-04 Mathieu Chevrier & Vincent Teixeira
  Algorithm Control and Responsibility: Shifting Blame to the User?
2024-05 Maxime Menuet
  Natural Resources, Civil Conflicts, and Economic Growth
2024-06 Harald Hagemann
  Hayek’s Austrian Theory of the Business Cycle
2024-07 Rami Kacem, Abir Khribich & Damien Bazin
  Investigating the Nonlinear Relationship between Social Development and Renewable Energy  
  Consumption: A Nonlinear Autoregressive Distributed Lag (ARDL) Based Method
2024-08 Abir Khribich, Rami Kacem & Damien Bazin
  The Determinants of Renewable Energy Consumption: Which Factors are Most Important?
2024-09 Abir Khribich, Rami Kacem & Damien Bazin
  Assessing Technical Efficiency in Renewable Energy Consumption: A Stochastic Frontier 
  Analysis with Scenario-Based Simulations
2024-10 Gianluca Pallante, Mattia Guerini, Mauro Napoletano & Andrea Roventini
   Robust-less-fragile: Tackling Systemic Risk and Financial Contagion in a Macro 
  Agent-Based Model
2024-11 Sandye Gloria
   Exploring the Foundations of Complexity Economics: Unveiling the Interplay of Ontological,   
  Epistemological, Methodological, and Conceptual Aspects
2024-12 Frédéric Marty
   L’Intelligence Artificielle générative et actifs concurrentiels critiques : discussion de l’essentialité  
  des données
2024-13 Leonardo Ciambezi
   Left for Dead? The Wage Phillips Curve and the Composition of Unemployment
2024-14 Sophie Pommet, Sylvie Rochhia & Dominique Torre
   Short-Term Rental Platforms Contrasted Effects on Neighborhoods: The Case of French Riviera  
  Urban Destinations
2024-15 Katia Caldari & Muriel Dal Pont Legrand
   Economic Expertise at War. A Brief History of the Institutionalization of French Economic 
  Expertise (1936-1946)
2024-16 Michela Chessa & Benjamin Prissé
   The Evaluation of Creativity



 

2024-17 Supratim Das Gupta, Marco Baudino & Saikat Sarkar
  Does the Environmental Kuznets Curve Hold across Sectors? Evidence from Developing and   
  Emerging Economies


