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We experimentally compare two well-known mechanisms inducing the Shap-
ley value as an ex ante equilibrium outcome of a noncooperative bargaining proce-
dure: the demand-based Winter’s demand commitment bargaining mechanism and
the offer-based Hart and Mas-Colell bidding procedure. Our results suggest that,
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1 Introduction

Bridging the gap between the noncooperative models, in which the primitives are the
sets of possible actions of individual players, and the cooperative ones, in which they
are the sets of possible joint actions of groups of players, has been recognized as a fun-
damental issue of game theory. The very first attempt of this so-called Nash program

dates back to almost 70 years ago by Nash himself (Nash, 1953). His idea was to pro-
vide a noncooperative foundation of cooperative solution concepts, and he first started
implementing it by designing a noncooperative game that sustained as equilibrium the
Nash solution of his cooperative bargaining problem (Nash, 1950). Since then, many
different theoretical mechanisms have been designed, with the aim of implementing co-
operative solution concepts via a strategic interaction of the players. This is the case, for
example, of the pillar work of Harsanyi (1974), who reinterpreted the von Neumann–
Morgenstern solution as an equilibrium of a noncooperative bargaining mechanism, or
of the many works sustaining the most famous axiomatic solution concept by Shap-
ley (1953), the Shapley value (see, among others, Gul, 1989; Winter, 1994; Hart and
Mas-Colell, 1996).

Despite a large body of existing literature, the Nash program “is not ready for re-

tirement yet”; on the contrary, it is “still full of energy” and “waiting for good papers to

be written” (Serrano, 2020). In this work, we aim to contribute to this research agenda
by providing new insights gained from a controlled laboratory experiment.

Two main issues arise with most noncooperative bargaining models as observed
by Fréchette et al. (2005) in an experimental work implementing some well-known
legislative bargaining processes. First, the theoretical predictions they propose are very
sensitive to variations in the rules of the game, for example, whether a demand-based
or an offer-based mechanism is considered. However, experiments show that actual
bargaining behavior is sometimes not as sensitive to the different bargaining rules as the
theory suggests. Second, the equilibrium solution may require an unrealistic degree of
rationality on the part of the players, such that the experimental evidence is substantially
different from the theoretical prediction.

In this paper, we experimentally compare two well-known mechanisms inducing the
Shapley value as the ex ante equilibrium outcome of a noncooperative bargaining pro-
cedure. We chose two mechanisms that are based on opposite approaches (demand vs
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offer) but which remain, in our opinion, similar in implementation and ease of under-
standing for the participants in a laboratory experiment.1 The first one is the Winter’s

demand commitment bargaining mechanism (Winter, 1994, referred to as the Winter

mechanism below). The second one is the Hart and Mas-Colell bidding procedure

(Hart and Mas-Colell, 1996, referred to as the H-MC mechanism below).
Both procedures are described as sequential, perfect information games, where at

each stage a player becomes a proposer. In the first one, which is defined for coop-
erative games with increasing returns to scale for cooperation (strictly convex games),
the proposer makes a demand for herself, of the payoff she is willing to receive from
a possible collaboration. In the second one, which is defined for monotonic games (a
much weaker assumption), the proposer makes a proposal to each of the other players,
of the payoff she is willing to offer them.

The difference between a demand-based versus an offer-based mechanism has been
argued to be less relevant when considering two-player games, such as in Rubinstein
(1982) for the divide-the-dollar game (see, Fréchette et al., 2005). Instead, it may be-
come crucial when considering groups with at least three members. In particular, offer-
based mechanisms are comparable with a voting procedure in which all the other players
either accept or reject the proposed utility share made by the proposer. As such, they
are theoretically expected to show a high degree of asymmetry between the proposer
and all the other players. In contrast, however, offer-based mechanisms may be seen
as n-player ultimatum bargaining games, in which the existing experimental results are
often not in agreement with the theoretical prediction. As many experiments of the
classical two-player ultimatum bargaining game (Güth et al., 1982) show, the intrinsic
asymmetry often allows a fairer division (see, e.g., Roth et al., 1991; Oosterbeek et al.,
2004).2 In our case, both mechanisms are expected to show some form of proposer ad-
vantage. In fact, for both mechanisms, the ex post predicted solution strongly depends
on the selected proposer, while, in particular, for the Winter mechanism, it depends on
the complete ordering.

Our analysis mainly focuses on: (i) analyzing whether these mechanisms lead to for-

1Comparison between an offer-based versus a demand-based mechanism has been done experimen-
tally for voting games by Fréchette et al. (2005), as well as empirically by, for example, Warwick and
Druckman (2001) and Ansolabehere et al. (2005) employing field data.

2Andersen et al. (2011) report, however, that when the stake size is very large, unfair divisions are
more frequently observed.
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mation of the grand coalition; (ii) testing the convergence, in expected value and as pre-
dicted by the theory, to the Shapley value; (iii) testing the axioms that are, historically,
the most relevant for characterizing the Shapley value. In particular, we investigate to
what extent the properties of efficiency, symmetry, additivity, homogeneity, null player,
strong monotonicity, and fairness are satisfied. By doing so, we aim to provide insights
regarding situations in which a demand-based mechanism is more appropriate than an
offer-based mechanism, and vice versa.

Our results show that the H-MC mechanism results in a higher frequency of grand
coalition formation and a higher efficiency than the Winter mechanism. The Winter
mechanism, on the contrary, satisfies most of the axioms, and better implements the
Shapley value as the average payoff share. Our results, therefore, suggest that an offer-
based H-MC mechanism better induces players to cooperate and to agree on an efficient
outcome, while a demand-based Winter mechanism better implements allocations that
reflect players’ effective bargaining power.

The remainder of the paper is organized as follows. Section 2 reviews existing stud-
ies that are most relevant to our work. Section 3 presents the general definition and the
properties of a cooperative transferable utility (TU) game, as well as the Shapley value
and the equal division solution together with their axiomatizations. Section 4 presents
the two mechanisms we investigate, namely the Winter and the H-MC mechanisms.
Section 5 describes the setting of our experiment and presents our hypotheses. The
results are presented in Section 6, and Section 7 concludes.

2 Related work

For a relevant and extensive review of the literature on the Nash program, we refer to
the recent survey by Serrano (2020). In this section, we focus on the studies that are
most relevant to our analysis.

The literature devoted to testing cooperative game theory through experiments has
up to now focused mainly on three different research streams. The first stream provides
a normative interpretation, as in De Clippel and Rozen (2013), in which subjects desig-
nated as decision-makers express their view on what is fair for others, by recommend-
ing a payoff allocation. De Clippel and Rozen (2013) show that the decision-maker’s
choices can be described as a convex combination of the Shapley value and the equal
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division solution.
The second stream investigates how an unstructured interaction affects the final

agreement. An example is Kalisch et al. (1954) in which groups of players were asked
to freely discuss the formation of coalitions and reach agreement on how to split the re-
lated values. The authors identified many different factors influencing the final outcome
of such a procedure, such as the personality differences or the geometrical arrangement
of players around the table. Similarly, but more focused on voting games, Montero
et al. (2008) suggest an unstructured bargaining protocol in which participants propose
and vote on how to distribute a fixed budget among themselves. The paper provides
experimental evidence of the so-called paradox of new members, according to which
enlargement of a voting body (i.e., addition of a new voter) can increase the voting
power of an existing member. Guerci et al. (2014) study the impact of variations in
the experimental protocol of Montero et al. (2008) on the formation of the so-called
minimal winning coalitions, i.e., coalitions for which each player is crucial.

Most of the experimental papers in the literature on the topic, however, follow a
third stream, which studies the outcome when a more formal (or structured) bargaining
protocol is imposed. Our paper broadens this last stream of research.

On the one hand, formal bargaining protocols have been implemented to tackle dif-
ferent aspects of the cooperative inclination of the players under different settings. For
example, Murnighan and Roth (1977) investigate the effect of some different commu-
nication/information conditions on the final outcome, in a specific game played by a
monopolist and two weaker players. They show how the results over the entire set of
conditions closely approximate the Shapley value, although they often report a clear
tendency for an equal split of the pie. In the same vein, Murnighan and Roth (1982) in-
troduce bargaining models to investigate the influence of information shared by subjects
about the games (payoffs, etc.) on the final outcome. They show that the quality of the
information has an impact on the final outcome and that the Nash bargaining solution
has good predictive performance in many cases. Bolton et al. (2003) also investigate
how the communication configuration affects coalition negotiation, and show how play-
ers with weaker alternatives would benefit from a more constrained structure, especially
if they can be the conduit of communication, while those endowed with stronger al-
ternatives would do well to work within a more public communication structure that
promotes competitive bidding. Other papers are more specifically oriented on the coali-
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tion formation process, such as Nash et al. (2012) and Shinoda and Funaki (2019). In the
former, the authors implement finitely repeated three-person coalition formation games,
showing how efficiency requires people’s willingness to accept the agency of others,
such as political leaders. The latter is a follow-up, in which the authors maintain the
same value of the coalitions as in Nash et al. (2012), but implement a different bargain-
ing protocol. They report a rare formation of the grand coalition, which can be better
induced by some external factors, such as the presence of a chat window.

On the other hand, formal bargaining protocols are most often based on the imple-
mentation of theoretical mechanisms, which are shown to converge to some specific
well-known solutions. This is the case, for example, in Nash (1953) and Harsanyi
(1974), which we have referred to already, or in the bargaining mechanism proposed
by Raiffa (1953) to implement the Raiffa solution (as opposed to the Nash solution)
to the Nash cooperative bargaining problem. Some experimental implementations have
been proposed, with the final goal of testing Nash axioms, or of comparing the Nash and
Raiffa solutions (see, e.g., Nydegger and Owen, 1975; Rapoport et al., 1977). We also
cite the large literature devoted to the study of a specific class of bidding mechanisms.
Bidding mechanisms were introduced by Demange (1984) and Moulin (1984) and stud-
ied by Moulin and Jackson (1992) in economic environments, and then developed by
Perez-Castrillo and Wettstein (2001) and Ju and Wettstein (2009) to implement solution
concepts in the framework of cooperative TU games.

In particular, many different theoretical mechanisms have been designed specifically
with the objective of implementing the best-known cooperative solution, the Shapley
value (see Shapley, 1953). Because this solution is applied primarily in many economic
problems, it is considered important to justify it using a strategic explanation. Among
others, we refer to Harsanyi (1981), Gul (1989), Hart and Moore (1990), Winter (1994),
Hart and Mas-Colell (1996), and Krishna and Serrano (1995), who deepen the study
of the set of subgame perfect equilibria associated with the bargaining mechanism pro-
posed by Hart and Mas-Colell (1996).

In this paper, we propose an experimental implementation of two of these mech-
anisms: one by Winter (1994) and another by Hart and Mas-Colell (1996). For the
former, we consider a simplified one-period version which was also previously used
by Bennett and van Damme (1991) in Apex games, a type of weighted majority game.
For the latter, we consider a particular case where a proposer whose proposal is re-
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jected leaves the game with probability 1. Our paper is similar to Fréchette et al. (2005)
who experimentally compare the offer-based model of Baron and Ferejohn (1989) with
the demand-based model of Morelli (1999) in weighted majority voting games. The
earlier experimental studies of the Baron–Ferejohn model are Fréchette et al. (2003,
2005b), while the experimental study of demand bargaining is Fréchette et al. (2005a).3

Fréchette et al. (2005) is, however, the first paper to directly compare the two within
an experimental framework. Their results show that proposers have some first mover
advantage in both the demand and offer games, but their power does not differ nearly as
much between the two mechanisms as theory predicts.

3 Theoretical model

3.1 Cooperative TU games and solutions

Let N = {1, . . . , n} be a finite set of players. Each subset S ⊆ N is called a coalition,
and N is called the grand coalition. A cooperative TU game (from now on, cooperative

game) consists of a couple (N, v), where N is the set of players and v : 2N → R is the
characteristic function, which assigns to each coalition S ⊆ N the worth v(S), with
the normalization condition v(∅) = 0. The worth of a coalition represents the value that
members of S can achieve by agreeing to cooperate. To simplify the notation and if
no ambiguity appears, we consider the set of players N fixed and we write v instead of
(N, v). We denote with GN the set of all games with player set N .

A game v ∈ GN is said to be

• monotonic if v(S) ≤ v(T ) for each S ⊆ T ⊆ N ,

• superadditive if v(S) + v(T ) ≤ v(S ∪ T ) whenever S ∩ T = ∅, with S, T ⊆ N ,

• convex if v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ), for each S, T ⊆ N , and strictly

convex if the inequality holds strictly.

We may observe that convexity⇒ superadditivity⇒ monotonicity. In (strictly) convex
games, cooperation becomes increasingly appealing, and a so-called “snowball effect”

3Fiorina and Plott (1978) also propose multiple experiments on committee decision-making under
majority rules to test a wide range of solution concepts of noncooperative games.
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is expected, leading to the formation of the grand coalition. Another equivalent defini-
tion for convexity can be stated as v(S ∪ {i}) − v(S) ≤ v(T ∪ {i}) − v(T ), for each
S ⊆ T ⊆ N \ {i}.

Given a game v ∈ GN , an allocation is an n-dimensional vector (x1, . . . , xn) ∈ RN

assigning to player i the amount xi ∈ R. For each S ⊆ N , we denote x(S) =
∑

i∈S xi.
The imputation set is defined by

I(v) = {x ∈ Rn|x(N) = v(N) and xi ≥ v({i}) ∀i ∈ N},

i.e., it contains all the allocations that are efficient (x(N) = v(N)) and individually

rational (xi ≥ v({i})∀i ∈ N ).
The core is the set of imputations that are also coalitionally rational, i.e.,

C(v) = {x ∈ I(v)|x(S) ≥ v(S) ∀S ⊆ N}.

An element of the core is stable in the sense that if such a vector is proposed as
an allocation for the grand coalition, no coalition will have an incentive to split off
and cooperate on its own. Intuitively, the idea behind the core is analogous to that
behind a (strong) Nash equilibrium of a noncooperative game: an outcome is stable if
no deviation is profitable. For the Nash equilibrium, the possible deviation is for a single
player, while in the core we speak about deviations of groups of players.

A solution is a function ψ : GN → RN that assigns an allocation ψ(v) to every game
v ∈ GN . The Shapley value is the best-known solution concept, which is widely applied
in economic models, and is defined as

φi(v) =
∑

S⊆N,i∈S

(|S| − 1)!(|N | − |S|)!
|N |!

(v(S)− v(S \ {i})) ∀i ∈ N.

The Shapley value assigns to every player its expected marginal contribution to the
coalition of players that enter before him, given that every order of entrance has equal
probability. This solution concept has been defined as respecting some notion of fair-
ness (see Section 3.2 for more discussion about its properties), but it is not, on the
contrary, necessarily stable. However, if the game is superadditive, the Shapley value
is an imputation, and if the game is convex, it belongs to the core (in particular, it is its
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barycenter).
Another solution concept, the equal division solution, distributes the worth v(N) of

the grand coalition equally among all players in any game, it is then defined as

EDi(v) =
v(N)

n
∀i ∈ N.

3.2 Axiomatizations of the game theoretical solutions

We provide two more definitions, which are used in the following.
Players i and j are symmetric in v ∈ GN , if v(S ∪ {i}) = v(S ∪ {j}) for all

S ⊆ N \ {i, j}. Player i is a null player in v ∈ GN if v(S) = v(S \ {i}) for all S ⊆ N .
In the literature, we can find various axiomatic characterizations of the cooperative

solutions and, in particular, of the Shapley value. Given a solution ψ : GN → RN , we
list here some of the most commonly used axioms to provide a characterization.

Axiom 1 (Efficiency): for every v in GN ,
∑

i∈N ψi(v) = v(N).

Axiom 2 (Symmetry): if i and j are symmetric players in game v ∈ GN , then
ψi(v) = ψj(v).

Axiom 3 (Additivity): for all v, w ∈ GN , ψ(v + w) = ψ(v) + ψ(w).

Axiom 4 (Homogeneity): for all v ∈ GN and a ∈ R, ψ(av) = aψ(v).

Axiom 5 (Null player property): if i is a null player in game v ∈ GN , then
ψi(v) = 0.

Axiom 6 (Strong monotonicity): if i ∈ N is such that v(S ∪ {i}) − v(S) ≤
w(S ∪ {i})− w(S) for each S ⊆ N , then ψi(v) ≤ ψi(w).

Axiom 7 (Fairness): if i, j are symmetric in w ∈ GN , then ψi(v +w)− ψi(v) =
ψj(v + w)− ψj(v) for all v ∈ GN .
Fairness states that if to a game v ∈ GN we add a game w ∈ GN in which players
i and j are symmetric, then the payoffs of players i and j change by the same
amount.
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In particular, among the many others, the axiomatization of Shapley (1953), which
is the most classical one, involves axioms 1, 2, 3, and 5. That of Young (1985) involves
axioms 1, 2, and 6, while that of van den Brink (2002) involves axioms 1, 5, and 7. Note
that axiom 4, even if not directly involved in any of these axiomatizations, is crucial,
together with axiom 3, as it guarantees the linearity of the solution.4

4 Two mechanisms

In this section, we present the demand-based Winter mechanism (Section 4.1) and the
offer-based H-MC mechanism (Section 4.2) in more detail. Section 4.3 presents an
example of the implementation of the two mechanisms.

4.1 The Winter mechanism

Winter (1994) presents a bargaining model based on sequential demands for strictly
convex cooperative games. We recall that in such games, cooperation becomes increas-
ingly appealing, and a snowball effect is expected, leading to the formation of the grand
coalition. Moreover, in convex games, the Shapley value is a central point in the core,
which is always nonempty.

In this model, players in turn announce publicly their demands, meaning “I am will-
ing to join any coalition yielding me a payoff of ...” and wait for these demands to be
met by other players. The bargaining starts with a randomly chosen player from N ,
say player i. This player announces publicly her demand di and then chooses a second
player who has to give her demand. Then, the game proceeds by having each player
pointing at a new player to take her turn after introducing a demand herself. If and
when at some point a compatible demand is introduced, which means that there exists a
coalition S for which the total demand for players in S does not exceed v(S), then the
first player with such a demand selects a compatible coalition S. The players in S get

4The equal division solution satisfies 1, 2, and 3, but it does not satisfy the null player property in 5.
However, it satisfies a similar property when null players are replaced with nullifying players. Player i
is a nullifying player if v(S) = 0 for each S ⊆ N such that i ∈ S. Then, we can state the following
additional axiom that can be called the Nullifying player property: if i is a nullifying player in game
v ∈ GN , then ψi(v) = 0. Replacing the null player property in the axiomatization of the Shapley value in
Shapley (1953) with the nullifying player property characterizes the equal division solution (see van den
Brink, 2006).
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their demands, leave the game, and the bargaining continues with the rest of the players
using the same rule on v restricted on N \ S.

We present here more formally the one-period Winter mechanism. This is a simpli-
fied version of the more general mechanism in Winter (1994), which allows for more
periods and includes a discount factor. A decision point position at time t of the one-
period demand commitment game is given by the vector (St1, S

t
2, dSt2 , j), where:

St1 ⊆ N is the set of players remaining in the game,

St2 ⊂ St1 is the set of players who have submitted demands that are not yet met,

dSt2 = (di)i∈St2 is the vector of demands submitted by players in St2, (0 ≤ di ≤
maxS⊆N v(S)), and

j ∈ St1 \ St2 is the player taking the decision by introducing a demand dj . Her
demand dj is said to be compatible if there exists some S ⊆ St2 with v(S∪{j})−∑

i∈S di ≥ dj . Otherwise, dj is not compatible.

With j’s decision, the game proceeds now in the following way.

1) If dj is compatible, then j specifies a compatible coalition S, each player i ∈
S ∪ {j} is paid di and nature chooses randomly a player k 6= j from St1 \ St2. The
new position is now given by (St+1

1 , St+1
2 , dSt+1

2
, k), with St+1

1 = St1 \ (S ∪ {j})
and St+1

2 = St2 \ (S ∪ {j}).

2) If dj is noncompatible, then two cases are distinguished:

2a) if St2 = St1 \ {j} (j is the last player to demand), then each player i ∈ St1 (j
included) gets her individual payoff v({i}), and the game ends;

2b) if St2 ⊂ St1 \ {j}, then j specifies a new player k 6= j in St1 \ St2 and the new
position is (St+1

1 , St+1
2 , dSt+1

2
, k), with St+1

1 = St1 and St+1
2 = St2 ∪ {j}.

The game starts with the random selection of a player j ∈ N . Then, the initial
position is set to be (N, ∅, d∅, j). It terminates either when there are no more players in
the game (see point 1 above), or when St1 ∪ {j} = St2 (see point 2a above).
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As shown by Winter for the more generic case, this mechanism has a unique sub-
game perfect equilibrium that assigns equal probabilities at indifference. At this equilib-
rium, the grand coalition forms and the a priori expected equilibrium payoff coincides
with the Shapley value. Moreover, given a specific ordering of the players, the a pos-

teriori equilibrium payoff of each player depends only on the order of the set of her
successors, and not on the way these players are ordered, as each player demands the
marginal contribution to the set of her successors.

4.2 The Hart and Mas-Colell mechanism

Hart and Mas-Colell (1996) propose a bargaining procedure for monotonic cooperative
games. We may observe that this is a much weaker assumption compared with the strict
convexity required by the Winter mechanism. Thus, the H-MC procedure is applicable
for a larger set of cooperative games.

In this mechanism, the bargaining starts with a randomly chosen proposer making
an offer to the other players, meaning “If you wish to form a coalition with me, I will
give you...”. Then, the other players may either accept or reject the proposal. The
requirement for agreement is unanimity. The key modeling issue is the specification of
what happens if there is no agreement and, as a consequence, the game moves to the
next stage. In our implementation, if the proposal is rejected, the proposer leaves the
game with her individual value and the bargaining continues with the rest of the players,
with a new player randomly chosen as the new proposer.

We present here a more formal description of the H-MC mechanism. A decision
point position at time t is simply given by the vector (St, j), where:

St ⊆ N is the set of players remaining in the game,

j ∈ St is the player making an offer to the remaining players (ti)i∈St\{j} such
that

∑
i∈St\{j} ti ≤ v(St).

With j’s proposal, the game proceeds now in the following way.

1) If each i ∈ St \ {j} independently and simultaneously accepts the proposal,
then players in St \ {j} are paid (ti)i∈St\{j}, player j is paid v(St)−

∑
i∈St\{j} ti,

and the game ends;
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2) If at least one player i ∈ St \ {j} refuses the offer, then two cases are distin-
guished:

2a) if |St| = 2 (only one more player is left, together with j), then they both get
their individual value v({i}) for each i ∈ St, and the game ends;

2b) if |St| > 2, then player i is removed from the game, she gets her individual
payoff v({i}), a new proposer k ∈ St+1 = St \ {j} is randomly selected, and the
new position is (St+1, k).

The game starts with a randomly chosen player j ∈ N . Then the initial position is
set to be (N, j). It terminates either when there are no more players in the game (see
point 2a above), or when the proposal is unanimously accepted (see point 1 above).

Hart and Mas-Colell (1996) show that this game has a unique subgame perfect equi-
librium. At this equilibrium, the grand coalition forms and the a priori expected equilib-
rium payoff coincides with the Shapley value. Differently from the Winter mechanism,
given a specific initial proposer j ∈ N (in the previous mechanism, it was necessary to
specify the order of all the players, while in this case only one player having the role
of proposer needs to be specified at an equilibrium), the a posteriori equilibrium payoff
assigns to each other player her Shapley value in the cooperative game reduced to the set
of players N \ {j}, and to the proposer, the marginal contribution to the grand coalition
v(N)− v(N \ {j}).

4.3 A comparison between the Winter and the H-MC mechanisms

We illustrate the two mechanisms using the strictly convex three-player game shown
in Table 1. Although our experiment is based on four-player games, a three-player
game example is of particular interest because it allows us to graphically represent the
imputation set, the core, and the different solutions, as will be illustrated in Figure 1.

Assume that player 1 is chosen randomly as the first proposer in both the mecha-
nisms. Independent of the order of the following players in the Winter mechanism, she
will get an a posteriori equilibrium payoff equal to 40 under both mechanisms, which
corresponds to her marginal contribution to the grand coalition v(N)− v(N \ {1}). We
may see how both the mechanisms show a proposer advantage, as 40 > 170

6
, meaning

that, as the first proposer, player 1 can get more than her Shapley value.
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Table 1: A three-player game.

S 1 2 3 1,2 1,3 2,3 N

v(S) 20 20 30 45 55 60 100

Assume that the total ordering of the players in the Winter mechanism is given by 1,
2, and 3. The a posteriori equilibrium payoff of the Winter mechanism is given by the
vector SOLW (v) = (40, 30, 30), in which player 2 demands her marginal contribution
v({2, 3})− v({3}), and player 3 her individual value v({3}).

In the H-MC mechanism, on the other hand, the proposer offers the Shapley value of
the reduced game to players 2 and 3. Thus, the a posteriori equilibrium payoff is given
by the vector SOLH−MC(v) = (40, 25, 35). Even with the disadvantage of not being
the first mover, player 2, as the second mover, manages to get more under the Winter
mechanism than under the H-MC mechanism, even if, in both cases, she gets less than
her Shapley value.

As we have already observed, the convexity assumption implies monotonicity. Thus,
the game satisfies the assumptions of both the Winter and the H-MC mechanisms. The
Shapley value of this game is given by the vector φ(v) =

(
170
6
, 185

6
, 245

6

)
= (28.33, 30.83, 40.83),

which corresponds to the a priori equilibrium payoff for both the Winter and the H-MC
mechanisms.

Figure 1 shows the imputation set I(v) = co 〈(20, 50, 30), (50, 20, 30), (20, 20, 60)〉,
the coreC(v) = co 〈(40, 30, 30), (40, 20, 40), (25, 20, 55), (20, 25, 55), (20, 45, 35), (25, 45, 30)〉,
the Shapley value φ(v), and the two a posteriori solutions SOLW (v) and SOLH−MC(v)

for the specific ordering 123 in a simplex. A point in the simplex corresponds to an al-
location (x1, x2, x3). For example, the height of a point from the edge that is opposite
from the apex labeled (100, 0, 0) represents the payoff allocated to player 1, thus a point
on the bottom edge represents an observed allocation that gives 0 payoff to player 1.
Similarly, the height of a point from the edge that is opposite from the apex labeled
(0, 0, 100) represents the payoff allocated to player 3.

We make the following two observations to conclude this example and the compar-
ison between the two mechanisms.
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Figure 1: The core of the three-player game.
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Observation 1. The core is always a convex polyhedron. The a posteriori equilibrium

when implementing the Winter mechanism always coincides with a vertex of this poly-

hedron. The a posteriori equilibrium when implementing the H-MC mechanism always

provides a vector on a face of this polyhedron.

Observation 2. In the H-MC mechanism, the proposer is forced to offer feasible de-

mands, i.e., if S is the set of players remaining in the game, she has to propose a total

distribution of payoff not bigger than v(S). In the Winter mechanism, on the other hand,

the players, speaking one after the other, may make unfeasible demands. Then, the for-

mation of a coalition, in the H-MC mechanism, is simply given by the choice of the

players to accept or not the proposal, while for the Winter mechanism, it can be blocked

by some unfeasibility conditions.
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Table 2: The games.

S 1 2 3 4 1,2 1,3 1,4 2,3 2,4 3,4 1,2,3 1,2,4 1,3,4 2,3,4 N

v1(S) 0 5 5 10 20 20 25 20 25 25 50 60 60 60 100
v2(S) 0 20 20 30 20 20 30 45 55 60 45 55 60 100 100
v3(S) = v1(S) + v2(S)
v4(S) = 2v1(S)

5 The experimental setting

5.1 The games

For our analysis, we implemented the four four-player games shown in Table 2. Note
that:

• games 1, 3, and 4 are strictly convex, while game 2 is only convex. All four
games are, by consequence, monotonic. Therefore, all four games respect the
assumptions for the implementation of the H-MC mechanism, while all but game
2 respect the assumption for the implementation of the Winter mechanism. With
game 2 being at least convex, however, we consider that “strict convexity” could
be relaxed and the mechanism could still be implemented in such a case;

• in games 1 and 4, players 2 and 3 are symmetric. They will be used to test the
symmetry axiom;

• in game 2, player 1 is a null player. This is why the game is only convex, but not
strictly convex, as the presence of a null player does not allow, by definition, the
possibility of having a strictly increasing marginal contribution for such a player.
It will be used to test the null player axiom;

• game 3 is defined as the sum of games 1 and 2. It will be used to test the additivity
and the fairness axioms;

• game 4 is defined as twice game 1 and it preserves the symmetry of players 2 and
3. It will be used to test the symmetry and the homogeneity axioms;

16



Table 3: The Shapley value of games 1, 2, 3, and 4.

φ1(v) φ2(v) φ3(v) φ4(v)

Game 1 22.08 23.75 23.75 30,42
Game 2 0 28.33 30.83 40.83
Game 3 22.08 52.08 54.58 71.25
Game 4 44.16 47.5 47.5 60.83

• the marginal contributions of player 1 are always higher in game 1 than in game
2, and also higher in game 4 than in game 3. Then, the payoffs of player 1 in the
four games will be used to check the strong monotonicity axiom.

The Shapley values of the four games are presented in Table 3. The equal division payoff
vector is simply equal to ED(vk) = (25, 25, 25, 25) when k = 1, 2, and ED(vk) =

(50, 50, 50, 50) when k = 3, 4.

5.2 The hypotheses

Our hypotheses rely on the theoretical predictions of the implementation of the Winter
and the H-MC mechanisms, which we presented in Sections 4.1 and 4.2, on the proper-
ties of the Shapley value solution, which we presented in Sections 3.1 and 3.2, and on
some behavioral assumptions.

Our first hypothesis (H1) investigates the capability of the players to cooperate to-
gether and form the grand coalition. Recall that if the players play according to the
equilibrium, with both mechanisms, they should form the grand coalition 100% of the
times. However, in Observation 2, we noted that the H-MC mechanism forces feasible
offers, while the Winter mechanism may see unfeasible demands. Because of this, we
expect the subjects to succeed in forming the grand coalition in the H-MC mechanism
more often than in the Winter mechanism. As a result, we expect that efficiency is
higher for the H-MC mechanism than the Winter mechanism.

H1 (a) The proportion of times the grand coalition forms is higher under the H-

MC mechanism than under the Winter mechanism. As a result, (b) efficiency is

higher under the H-MC mechanism than under the Winter mechanism.
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Our second hypothesis (H2) is about the convergence of our mechanisms to the
expected ex ante equilibrium prediction, the Shapley value. Note, however, if the fre-
quencies of the grand coalition formation are low, one should not expect the average
payoffs to follow the Shapley value. We, therefore, investigate whether the average pay-
off shares, instead of payoffs themselves, follow the Shapley value. Because the theory
suggests both mechanisms implement the Shapley value, we expect both mechanisms
to do so equally.

H2 The H-MC and Winter mechanisms equally implement on average the Shap-

ley value solution in terms of payoff shares.

In contrast, when it comes to ex post equilibrium prediction, the two mechanisms
differ. As noted in Observation 1, the Winter mechanism provides solutions on the
vertexes of the core, while the H-MC mechanism does so on the faces of the polyhedron.
Thus, the latter is closer to the barycenter of the core (i.e., for convex games, to the
Shapley value) than the former. This leads to our third hypothesis (H3).

H3 The H-MC mechanism provides ex post payoff shares that are closer to the

Shapley value than the Winter mechanism.

Our fourth hypothesis (H4) is a behavioral hypothesis, and is based on the literature
according to which an offer-based mechanism should provide some payoff allocations
that are closer to the equal division solution.

H4 The payoff shares resulting from the H-MC mechanism are closer to an equal

division solution than those resulting from the Winter mechanism.

Our last hypothesis (H5) is whether the axioms we presented in Section 3.2 are
satisfied or not, at least in terms of payoff shares (except for efficiency (Axiom 1), which
is about resulting payoffs). As noted above in stating H2, we expect both mechanisms
to equally satisfy (at least in terms of payoff shares) various axioms.

H5 The payoff shares resulting from the implementation of the H-MC and the

Winter mechanisms equally satisfy the axioms 2–7 that characterize the Shapley

value.
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6 Results

The experiment was conducted at the Institute of Social and Economic Research (ISER),
Osaka University, between January and December 2019. A total of 180 students, who
had never participated in similar experiments before, were recruited as subjects of the
experiment, 96 playing the Winter mechanism and 84 playing the H-MC mechanism.5

The experiment was computerized with z-Tree (Fischbacher, 2007) and participants
were recruited using ORSEE (Greiner, 2015).

To control for potential ordering effects, each participant played all four games twice
in one of the following four orderings: 1234, 2143, 3412, and 4321. Between each
play of a game (called a round), players were randomly rematched into groups of four
players, and participants were randomly assigned a new role within the newly created
group. At the end of the experiment, two rounds (one from the first four rounds and
another from the last four rounds) were randomly selected for payments. Participants
received cash rewards based on the points they earned in these two selected rounds with
an exchange rate of 20 JPY = 1 point in addition to the 1500 JPY participation fee. The
experiment lasted on average 100 min for Winter and 90 min for H-MC including the
instructions (15 min for Winter and 11 min for H-MC), a comprehension quiz (5 min),
and payment.6 Average earnings were 2650 JPY for Winter and 2780 JPY for H-MC.

6.1 Grand coalition formation and efficiency

Figure 2 presents the results of the grand coalition formation, in the H-MC mechanism
and in the Winter mechanism, for the four games.7

For game 2 under the Winter mechanism, the grand coalition never forms (because
player 1 is a null player and, consequently, the game is only convex and not strictly

5The difference in the number of participants between the two mechanisms is a result of variations in
the show-up rate among experimental sessions.

6Participants received a copy of the instruction slides, and prerecorded instruction movies were played.
See Appendix D for English translations of the instruction slides and the comprehension quiz.

7The figure is created based on the estimated coefficients of the following linear regressions: gci =
β1HMCi+β2Winteri+µi where gci is a dummy variable that takes the value of 1 if the grand coalition
is formed, and zero otherwise, in group i, HMCi (Winteri) is a dummy variable that takes the value
of 1 if the H-MC (Winter) mechanism is used, and zero otherwise. The standard errors are corrected for
within-session clustering effects. The statistical tests are based on the Wald test for the equality of the
estimated coefficients of two treatment dummies.
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Figure 2: H-MC and Winter mechanisms: proportion of times the grand coalition
formed.
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Note: Error bars show one standard error range. *** indicates the proportion of times the grand coalition formation was significantly

higher for the H-MC implementation than the Winter implementation at the 1% significance level (Wald test).

convex8). Therefore, for game 2, we also consider the partition {1}, {2, 3, 4} as a
realization of the grand coalition for both the H-MC and the Winter mechanisms.

The H-MC mechanism manages to enhance complete cooperation (in the case of
game 2, and either the grand coalition or the {2, 3, 4} coalition) in 60.4% of the cases.
The Winter mechanism, however, manages to enhance complete cooperation in only
41.1% of the cases. Although the grand coalition is not formed frequently, we observe
that it is formed more frequently under the H-MC mechanism in three of the four games,
compared with the Winter mechanism. In particular, for games 3 and 4, this difference
is significant at the 1% level.

As a direct consequence of the low frequencies of grand coalition formation, we
note that both mechanisms fail to achieve full efficiency. Efficiency is computed as the
fraction of the sum of the payoffs obtained by the four players compared with the value

8Recall that the Winter mechanism is theoretically defined for strictly convex games. Player 1, in this
game, always has a zero marginal contribution and, as such, can be left out of any coalition at no cost to
either him/her or the other players
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of the grand coalition of the considered game (100 for games 1 and 2 and 200 for games
3 and 4). However, as Figure 3 shows, efficiency is higher under the H-MC mechanism
than under the Winter mechanism in games 1, 3, and 4. In particular, these differences
are significant at the 1% level for game 3, and at the 5% level for game 4.9

Figure 3: Efficiency.
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Note: Error bars show the one standard error range. *** and ** indicate the proportion of times that verification of the efficiency

axiom was significantly higher for the H-MC implementation than the Winter implementation at the 1 and 5% significance levels

(Wald test).

Therefore, we conclude the following.

Result 1. Although the grand coalition is not formed frequently under the two mecha-

nisms, it is more frequently formed under the H-MC mechanism than under the Winter

mechanism. Consequently, efficiency is higher under the H-MC mechanism than under

the Winter mechanism. Thus, H1 is verified.
9The figure is created based on the estimated coefficients of the following linear regressions: Effi =

β1HMCi + β2Winteri + µi where Effi ≡
∑

i πi

v(N) is the efficiency measure for group i, HMCi
(Winteri) is a dummy variable that takes the value of 1 if the H-MC (Winter) mechanism is used,
and zero otherwise. The standard errors are corrected for within-session clustering effects. The statistical
tests are based on the Wald test for the equality of the estimated coefficients of two treatment dummies.
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6.2 Payoff shares

We denote by πH−MC(vk) a vector of payoffs obtained by the players while implement-
ing the H-MC mechanism on game k, with k = 1, 2, 3, 4. Analogously, we denote
by πW (vk) a vector of payoffs obtained by the players while implementing the Winter
mechanism. The ex ante theoretical prediction of both mechanisms states that the mean
of such vectors when implementing either the H-MC or the Winter mechanism many
times with different orderings of the players should converge to the Shapley value. In
the first part of this section, we test such a hypothesis.

As a consequence of the players often failing to form the grand coalition, as observed
in Section 6.1, the total share of utility of a payoff vector is often smaller than the value
of the grand coalition (see Figure 3). As a result, the average realized payoff vectors
are significantly different from the Shapley value as shown in Figure 6 of Appendix A.
Therefore, we focus on analyzing the mean of the normalized (to the value of the grand
coalition) payoff vectors, instead of the realized payoff vectors themselves. This aims
to investigate whether the proportion of the power share, in lieu of the absolute payoffs,
converges to the Shapley value. For this reason, in this and in the following sections, we
consider the normalized vectors of payoffs with components π̃i

W (vk) =
πWi (vk)∑
j∈N πWj (vk)

×

vk(N) and π̃i
H−MC(vk) =

πH−MC
i (vk)∑

j∈N πH−MC
j (vk)

× vk(N) for each i = 1, 2, 3, 4 (recall that
the value of the grand coalition is equal to 100 for games 1 and 2 and to 200 for games
3 and 4).10

Figure 4 shows the mean of the normalized payoffs in the four games; the horizontal
lines indicate the Shapley values for each game.11 One can observe that, while for the
Winter mechanism, the average normalized payoffs are not significantly different from
the Shapley value for all four players in games 1, 2, and 4, for the H-MC mechanism,
the average normalized payoffs for all four players differ from the Shapley value only
for game 1.

Result 2. The average payoff shares follow the Shapley value more closely under the

10In Appendix C, we report the results based only on the realized payoff allocations when grand coali-
tions are formed. The results are qualitatively the same.

11The error bars are based on the standard errors that are corrected for within-session clustering effects.
These standard errors are obtained by estimating the system of linear regressions described in Section 6.3.
The standard errors are corrected for session-level clustering effects. The statistical tests are based on
these regressions.
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Figure 4: Mean of the normalized payoffs.
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Note: The horizontal lines indicate the Shapley values. Error bars show the one standard error range. ***, **, and * indicate the

average normalized payoff being significantly different from the Shapley value at the 1, 5, and 10% significance levels (Wald test).

Winter mechanism than under the H-MC mechanism. Thus, we reject H2 that states that

both mechanisms implement the Shapley value equally.

Furthermore, we observe from Figure 4 that the null player property (Axiom 5) is
always verified for the Winter mechanism (100% of the time), as the null player 1, in
game 2, always gets 0 as a payoff. On the contrary, this property is not verified for the
H-MC mechanism, in which the same player in the same game gets on average a payoff
equal to 5.44, and, in particular, she gets a payoff of 0 in only 28 out of 48 implementa-
tions of the game (58.33% of the time). We interpret this result as a consequence of the
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offer-based nature of the H-MC mechanism because the players may feel uncomfortable
offering a 0 payoff, even to a player who is recognized to not have a useful role in the
cooperation, for fear of the proposal being rejected.

We now turn to investigate H3 and H4, which relate to ex post payoffs. We mea-
sure the distance between the realized normalized payoff vectors and the Shapley value,
as well as the equal division solution, for the four games by the Euclidean distances
between the two. Namely, we compute, Dis2φ =

√∑
i(π̃i − φi)2 and Dis2ED =√∑

i(π̃i − EDi)2, respectively. In the formula, for the sake of simplicity, we omit the
specifications about the considered mechanism and the game. Figure 5 shows the mean
Dis2φ and the mean Dis2ED of such distances for the two mechanisms in the four
games.12

The distance to the Shapley value is smaller for the H-MC mechanism than the
Winter mechanism in games 1, 3, and 4, and significantly so for games 1 and 4, at the
1% level. The only exception is game 2, in which the distance is smaller for the Winter
mechanism than the H-MC mechanism at the 10% level. Furthermore, the distance to
the equal division solution is always significantly lower (at the 1% level) for the H-MC
mechanism than for the Winter mechanism.

Result 3. The H-MC mechanism results in payoff shares that are more equal and also

closer to the Shapley value than the Winter mechanism. Thus, both H3 and H4 are

verified.

Such results reflect the very nature of the two mechanisms that we have already
indicated when formulating the hypotheses. In fact, the ex post equilibrium predictions
state that the Winter mechanism should provide solutions on the vertexes of the core,
while the H-MC mechanism provides solutions on the faces of the polyhedron, and are
thus closer to its barycenter (i.e., for convex games, to the Shapley value).

12The figure is created based on the estimated coefficients of the following linear regressions: Disi =
β1HMCi+β2Winteri+µi whereDisi is the relevant distance measure for group i, HMCi (Winteri)
is a dummy variable that takes the value of 1 if the H-MC (Winter) mechanism is used, and zero otherwise.
The standard errors are corrected for within-session clustering effects. The statistical tests are based on
the Wald test for the equality of the estimated coefficients of the two treatment dummies.
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Figure 5: Mean of the distances of the normalized payoff vectors from the Shapley value
and the equal division solutions.
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the 1, 5, and 10% significance levels (Wald test).

6.3 Testing the axioms

We have already noted that both mechanisms fail to satisfy efficiency (Axiom 1), and
while the Winter mechanism satisfies the null player property (Axiom 5), the H-MC
mechanism fails to do so. We now test the remaining axioms.

To test symmetry (Axiom 2), additivity (Axiom 3), homogeneity (Axiom 4),
strong monotonicity (Axiom 6), and fairness (Axiom 7), we estimate a set of OLS
regressions for the following system of equations, with dependent variables being the
average normalized payoffs for player i, π̃i, and the independent variables being g1, g2,
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Table 4: Wald tests of the H-MC and Winter mechanisms for the verification of the
symmetry, additivity, homogeneity, strong monotonicity, and fairness axioms.

H-MC Winter

Axiom H0 χ2 p-value χ2 p-value

Symmetry b1 = c1 1.01 0.314 0.08 0.781
b4 = c4 0.47 0.492 0.14 0.712

Additivity a3 = a1 + a2 36.91 0.000 7.25 0.007
b3 = b1 + b2 1.11 0.292 0.65 0.422
c3 = c1 + c2 0.53 0.466 2.54 0.111
d3 = d1 + d2 4.78 0.0288 0.35 0.555

Homogeneity a4 = 2a1 0.16 0.689 0.06 0.805
b4 = 2b1 0.28 0.598 0.37 0.542
c4 = 2c1 5.90 0.015 0.02 0.892
d4 = 2d1 3.23 0.072 0.35 0.552

Strong monotonicity a1 = a2 23.87 0.000 62.74 0.000
a4 = a3 11.55 0.001 147.12 0.000

Fairness b3 − b2 = c3 − c2 0.15 0.694 7.53 0.006

g3, g4 and without a constant:

π̃1 = a1g1 + a2g2 + a3g3 + a4g4 + u1

π̃2 = b1g1 + b2g2 + b3g3 + b4g4 + u2

π̃3 = c1g1 + c2g2 + c3g3 + c4g4 + u3

π̃4 = d1g1 + d2g2 + d3g3 + d4g4 + u4

where gk is a dummy variable that equals 1 if game k is played, and zero otherwise.
Various axioms are tested based on the estimated coefficients of these regressions.13

Symmetry requires b1 = c1 and b4 = c4. Additivity and homogeneity require x3 =

x1 + x2 and x4 = 2x1 for x ∈ {a, b, c, d}, respectively. Strong monotonicity requires
a1 > a2 and a4 > a3. Finally, fairness requires, b3 − b2 = c3 − c2. In Table 4, we
present the results of the Wald test of the verification of these axioms, together with the
null hypothesis (H0).

13Table 6 in Appendix B reports the results of these regressions, H-MC in the left panel and Winter in
the right panel. The standard errors are corrected for session-level clustering effects.
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Table 5: H-MC and Winter mechanisms: axioms.

Axiom H-MC Winter

Efficiency + –
Symmetry + +
Additivity – +

Homogeneity – +
Null player property – +
Strong monotonicity + +

Fairness + –

Note that the symmetry (according to which H0 should not be rejected) is always
confirmed, both for the H-MC and the Winter mechanisms. Additivity and homogeneity
(according to which H0 should not be rejected) is almost always confirmed for the Win-
ter mechanism, but is confirmed only half the time for the H-MC mechanism. Strong
monotonicity (according to which H0 should be rejected) is confirmed. Fairness (ac-
cording to which H0 should not be rejected) is rejected for the Winter mechanism, but
confirmed for the H-MC mechanism. Table 5 summarizes whether each axiom is sat-
isfied on average (+) or not (–) for the two mechanisms. We can state these results as
follows.

Result 4. In terms of payoff shares, the Winter mechanism satisfies the axioms that

characterize the Shapley value better than the H-MC mechanism. Thus, we reject H5,

which states that the two mechanisms satisfy these axioms equally.

7 Conclusions

We have compared experimentally two of the best-known bargaining procedures in the
Nash program: the H-MC and Winter mechanisms. Our main rationale in this choice
has been simplicity, which represents a main desideratum when considering possible
applicability in the real world. These two mechanisms are simple and similar in terms of
implementation, and are thus suitable for direct comparison. The two mechanisms differ
in the way they implement bargaining: based on offers, for H-MC, and on demands, for
Winter.
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Previous experimental analyses on legislative bargainings find a certain similarity
between a demand-based and an offer-based mechanisms (see Fréchette et al., 2005),
despite their sharply different theoretical predictions. Our findings partially contradict
these results, showing how two very similar mechanisms can behave differently, again,
despite their similar theoretical predictions. In particular, the H-MC mechanism resulted
in higher frequency of grand coalition formation and higher efficiency than the Winter
mechanism. In contrast, the Winter mechanism resulted in average payoff shares that
are closer to the Shapley value and better satisfy various axioms. Therefore, our results
suggest that the offer-based H-MC mechanism better induces players to cooperate and
to agree on an efficient outcome, while the demand-based Winter mechanism better
implements allocations that reflect players’ effective bargaining power.

Enhancing the understanding of axiomatic (cooperative game) solutions by provid-
ing noncooperative foundations was a main objective of the Nash program. Given our
results, we cannot confirm the superiority of one of the axiomatizations in Section 3.2
from a behavioral perspective. However, we can provide some insight into which ax-
ioms are the most likely to be respected in various bargaining situations and thus, which
axioms are the ones that should be imposed by an alternative solution. For example,
players seem to be capable of getting the same payoffs when two individuals have equal
bargaining weight (symmetry axiom), or acknowledge the superiority of one particu-
lar player in terms of marginal contribution when comparing two different situations
(strong monotonicity axiom). On the one hand, requiring efficiency of a solution seems
utopian in many cases. Players find it difficult to offer no reward when facing a null
player. On the other hand, they do not have a problem refusing a nonzero demand by
the same null player. We believe that a more rigorous verification of various axioms un-
derling cooperative game solutions from a behavioral point of view represents the first
important direction for future work.

Our findings suggest that the choice of a given mechanism may have some unex-
pected nudging effects, regardless of the theoretical prediction. Furthermore, this should
be taken into account when making such a choice in various applications. In fact, dif-
ferent bargaining mechanisms, even when equivalent from a theoretical point of view,
favor different properties, which are reflected by the resulting allocations. A deeper
analysis of this issue is our second suggestion for future work in this domain.

In addition, many potentially important complementary questions can be addressed
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in future research. Among these is an analysis of the more complex versions of our
proposed mechanisms (e.g., the Winter mechanism with more periods and a discount
factor, or the H-MC mechanism where the proposer who sees her offer refused leaves
the game with a probability strictly smaller than one), which can be compared with our
actual results.
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A The average payoffs

Figure 6 provides the mean of the nonnormalized payoffs in the four games, the hori-
zontal lines indicating the Shapley values for each game.14

Figure 6: Mean payoffs.
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Note: Error bars show the one standard error range. ***, **, and * indicate the average payoff being significantly different from the

Shapley value at the 1, 5, and 10% significance levels (Wald test)

14Just as in Figure 4, the mean and the standard errors are obtained by estimating the system of linear
regressions that takes each player’s payoff as a dependent variable along with four-game dummy variables
without a constant (similar to the one described in Section 6.3). The standard errors are corrected for
session-level clustering effects. The statistical tests are based on these regressions.
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B Results of linear regression for normalized payoffs

Table 6: Results of linear regression for normalized payoffs.

H-MC Winter
π̃1 π̃2 π̃3 π̃4

g1 21.43 25.38 23.30 29.90
(1.88) (1.20) (1.53) (1.60)

g2 5.12 27.52 28.04 39.31
(1.63) (0.72) (0.83) (0.92)

g3 38.06 49.84 49.94 62.15
(1.75) (1.56) (0.70) (1.96)

g4 44.13 49.03 51.97 54.87
(0.56) (2.06) (2.33) (0.81)

R2 0.83 0.96 0.96 0.96
Obs. 168 168 168 168

π̃1 π̃2 π̃3 π̃4
g1 21.99 21.91 23.39 32.80

(2.78) (3.80) (2.12) (2.09)
g2 0.0 28.70 30.75 40.55

- (0.61) (0.44) (0.51)
g3 8.95 54.09 61.52 75.55

(2.16) (3.86) (2.84) (4.57)
g4 42.18 48.13 45.57 64.13

(3.15) (2.34) (5.14) (4.51)
R2 0.73 0.90 0.92 0.93

Obs. 192 192 192 192

C Additional results based only on the groups that formed
a grand coalition

Here, we redo the analyses testing H3 and H7 reported in the main text based only on
those groups that formed a grand coalition. The qualitative results, however, remain the
same.
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Figure 7: Mean payoffs based only on the groups that formed a grand coalition.
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Note: the horizontal lines indicate the Shapley values. Error bars show the one standard error range. ***, **, and * indicate the

average normalized payoff being significantly different from the Shapley value at the 1, 5, and 10% significance levels (Wald test).
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Figure 8: Mean of the distances of the payoff vectors from the Shapley value and the
equal division solutions for the groups that formed a grand coalition.
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Note: Error bars show the one standard error range. ***, **, and * indicate the distance of the normalized payoff vectors from the

Shapley value or from the equal division solution is significantly different between the H-MC and the Winter implementation, at

the 1, 5, and 10% significance levels (Wald test).

Table 7: Results of linear regression based only on the groups that formed a grand
coalition.

H-MC Winter
π1 π2 π3 π4

g1 23.88 25.63 24.56 25.93
(0.70) (0.43) (0.11) (0.42)

g2 11.07 26.07 27.73 35.13
(3.31) (1.45) (0.97) (1.95)

g3 45.88 51.32 49.72 53.08
(1.70) (1.19) (0.50) (1.84)

g4 47.83 48.67 50.5 53.00
(1.17) (0.89) (0.87) (1.10)

R2 0.96 0.99 0.99 0.97
Obs. 97 97 97 97

π1 π2 π3 π4
g1 23.09 24.57 22.43 26.65

(2.28) (1.11) (1.01) (3.11)
g2 0.0 29.15 31.56 38.81

- (1.03) (0.54) (0.73)
g3 21.00 52.67 57.33 68.00

(3.57) (5.42) (4.11) (5.19)
g4 44.24 48.14 45.57 56.86

(3.22) (4.12) (8.58) (4.68)
R2 0.90 0.93 0.91 0.95

Obs. 77 77 77 77
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Table 8: Results of Wald tests for the verification of the symmetry, additivity, homo-
geneity, strong monotonicity, and fairness axioms (based only on the groups that formed
a grand coalition).

H-MC Winter

Axiom H0 χ2 p-value χ2 p-value

Symmetry b1 = c1 5.07 0.024 1.85 0.174
b4 = c4 1.11 0.293 0.06 0.8110

Additivity a3 = a1 + a2 4.84 0.028 0.13 0.721
b3 = b1 + b2 0.03 0.861 0.02 0.878
c3 = c1 + c2 14.99 0.000 0.47 0.492
d3 = d1 + d2 11.10 0.001 0.78 0.376

Homogeneity a4 = 2a1 0.00 0.983 0.10 0.749
b4 = 2b1 13.12 0.000 0.11 0.745
c4 = 2c1 2.25 0.134 0.00 0.947
d4 = 2d1 0.43 0.513 0.82 0.365

Strong monotonicity a1 = a2 215.83 0.000 102.24 0.000
a4 = a3 0.67 0.411 26,84 0.000

Fairness b3 − b2 = c3 − c2 3.02 0.082 0.74 0.391

Table 9: Tests of axioms (based only on the groups that formed a grand coalition).

Axiom H-MC Winter

Efficiency + +
Symmetry – +
Additivity – +

Homogeneity + +
Null player property – +
Strong monotonicity – –

Fairness – +
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D Translated instructions and comprehension quiz

D.1 Winter mechanism instructions

An English translation of the handout can be downloaded from
https://bit.ly/33IzgMM

D.2 H-MC mechanism instructions

An English translation of the handout can be downloaded from
https://bit.ly/34FnIck

D.3 Comprehension quiz

An English translation of the comprehension quiz can be downloaded from
https://bit.ly/3mFlCjW
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