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Abstract

When the cleaning up of a polluted transboundary river requires the cooperation of
several agents (countries, regions, firms or cities) located along it, a challenging issue
is how should the pollutant-cleaning costs be shared among them. An important
factor ignored by literature so far concerns the ability for wastewater treatment of
the river itself depending on both sediment types and ecological units (hydrophyte
filter beds, aerobic digesters,. . . ) in order to control waste flow from upstream to
downstream. First, we introduce and implement a new cost sharing method for
polluted river problems under waste flow control, called the Downstream Compensa-
tion method, which combines the two well-known conflicting theories in international
river disputes, namely the Absolute Territorial Sovereignty and the Unlimitted Terri-
torial Integrity. When the river does not have any wastewater treatment ability, the
Downstream Compensation method coincides with the Downstream Equal Sharing
method. At the other extreme case of full wastewater treatment within the river, the
Downstream Compensation method corresponds to the Local Responsibility Sharing
method. Second, we show that the Downstream Compensation method is obtained
as the Shapley value of appropriately defined cooperative games with transferable
utility. Finally, we prove that these games satisfy the concavity property, meaning
that the proposed cost allocation scheme belongs to the core.
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1 Introduction

The study of allocation problems to resolve international disputes related to trans-
boundary rivers has developed in two directions. On the one hand, a growing literature
has investigated the problem of sharing clean water resources among several agents (coun-
tries, regions, firms or cities) located along a river, see e.g. Ambec and Sprumont (2002
[3]), Parrachino et al. (2006 [24]), van den Brink et al. (2007 [11]), Ambec and Ehlers
(2008 [2]), Khmelnitskaya (2010 [17]), Wang (2011 [32]), Ansink and Weikard (2012 [4]),
van den Brink et al. (2012 [10]), van den Brink et al. (2014 [7]) and Béal et al. (2015 [6]).
On the other hand, several works, including ours, have developed game theoretical models
for studying how to share the costs of cleaning up a polluted river among agents located
along it.

Water pollution is a major environmental problem faced by modern societies that leads
to unprecedented ecological imbalances, chasing countless species from their habitats, de-
stroying biodiversity and depleting land. Around the world, more than 200 rivers pass
through national borders (Ambec and Sprumont 2002 [3], Barrett 2010 [5]), and many
others flow across borders between regions or cities. From a theoretical point of view, the
so-called cost sharing problem on a river network, shortly called polluted river problem,
was first introduced by Ni and Wang (2007 [23]) for single spring rivers, and generalized
by Dong et al. (2012 [12]) for rivers with multiple springs. They proposed and charac-
terized three cost sharing methods based on the two well-known conflicting theories in
international river disputes, namely the Absolute Territorial Sovereignty (ATS) and the
Unlimitted Territorial Integrity (UTI).1 The Local Responsibility Sharing (LRS) method
applies the local responsibility principle implied by the ATS theory, and requires that
each agent should pay for the cleaning cost in its own territory. The Upstream Equal
Sharing (UES) (Downstream Equal Sharing (DES), respectively) method corresponds to
the downstream responsibility (upstream responsibility, respectively) principle implied by
the UTI theory, and assigns each agent with its own cleaning cost plus the equal sharing
of the downstream (upstream, respectively) costs.2 The authors also showed that these
methods were obtained as the Shapley value of appropriately defined cooperative games
with transferable utility (henceforth TU-games), and as solutions belonging to the core of
these games. Moreover, van den Brink et al. (2018 [9]) proved that the UES and DES
methods correspond to the conjunctive permission value (van den Brink and Gilles, 1996
[8]) of an associated cooperative game with a permission structure. They also introduced
a new cost sharing method, called the Upstream Limited Sharing method, by applying the
disjunctive permission value (Gilles and Owen, 1994 [13]) to every polluted river problem.

1While the ATS theory stipulates that a country has absolute sovereignty over the area of any river
basin within its territory, the UTI theory stipulates that a country should not alter the natural conditions
within its own territory to the disadvantage of a neighboring country. We refer to Godana (1985 [15]) and
Kilgour and Dinar (1996 [18]) for more discussions on the ATS and the UTI theories.

2Ni and Wang (2007 [23]) first proposed the LRS and UES methods. Dong et al. (2012 [12]) extended
these two methods to rivers with multiple springs and introduced the DES method based on a new
interpretation of the UTI theory.
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Recently, Sun et al. (2019 [27]) proposed and characterized a cost allocation scheme based
on a one-by-one formation of the grand coalition (Shapley, 1953 [25]) which turned out to
be a convex combination of the LRS and UES methods.

An important factor ignored by literature on polluted river problems so far is that the
river itself may have some ability for wastewater treatment in order to control waste flow
from upstream to downstream. Generally speaking, water purification process depends on
both natural conditions such as sediment types (see e.g. Wijesiri et al., 2019 [33]) and
ecological units such as hydrophyte filter beds and aerobic digesters3 among others (see
e.g. Vanderpoorten, 1999 [31], and Wu et al., 2013 [34]). In this article, we generalize
the polluted river model introduced by Ni and Wang (2007 [23]) by taking into account
the ability for wastewater treatment of the river itself. Precisely, we assume that a river
is divided into several segments, each one having an exogenous wastewater treatment rate
of between 0 (null wastewater treatment) and 1 (full wastewater treatment). The waste
transfer rate from an upstream segment to a downstream one is then equal to the product
of the wastewater treatment rates of the segments between these two segments, including
the upstream one. This enables us to define the transferred cleaning cost an agent has to
pay for the cleaning up of the waste flow from its upstream river segments.

First, we propose a new cost sharing method for polluted river problems under waste
flow control, called the Downstream Compensation (DC) method. Similarly to Shapley’s
idea of a one-by-one formation of the grand coalition (Shapley, 1953 [25]), we provide a
procedural implementation of the DC method4 which turns out to be a natural compro-
mise between the ATS and the UTI theories. During the coalition formation process, each
entrant bargains with the agents within the existing coalition in accordance with the ATS
and the UTI theories. First, according to the local responsibility principle implied by
the ATS theory, each entering agent undertakes its own cleaning cost. Second, once the
entering agent cleans up the pollutants in its own territory, according to the upstream
responsibility principle implied by the UTI theory,5 it requires that each of its downstream
agents compensates a part of the transferred cleaning costs of its upstream agents. Con-
versely, the upstream agents also require that the entering agent compensates a part of
their own transferred cleaning costs. Proceeding in this way, once the grand coalition is
formed, independently of the selected arrival order, the total pollutant-cleaning cost is fully
distributed among the agents. We then show that this cost allocation scenario combining
the ATS and the UTI theories implements the DC method. Interestingly, when the river
segments do not have any wastewater treatment ability, the DC method coincides with
the DES method (Dong et al, 2012 [12]) and the Airport Landing Fee solution (Littlechild
and Owen, 1973 [19]).6 At the other extreme case of full wastewater treatment of the
river segments, the DC method corresponds to the LRS method (Ni and Wang, 2007 [23]).

3In what follows, we will assume that such ecological units can be installed at zero cost.
4Malawski (2013 [20]), Sun et al. (2017a [28]) and Sun et al. (2017b [29]) also focus on the dynamic

formation process of the grand coalition in order to propose new classes of values for TU-games.
5According to the interpretation of Dong et al. (2012 [12]), the UTI theory requires monetary compen-

sations from downstream agents to upstream ones.
6See also Tijs and Driessen (1986 [30]) and Hou et al. (2018 [16]) on that point.
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Second, we prove that the DC method is obtained as the Shapley value (Shapley, 1953
[25]) of TU-games where the worth of any coalition is derived from the ATS and the UTI
theories. Finally, we establish that these games satisfy the concavity property, meaning,
in the context of cost games, that the cost allocation scheme induced by the DC method
belongs to the core.

The paper is organized as follows. In Section 2, we define polluted river problems under
waste flow control and introduce the DC method. In Section 3, we provide a procedural
implementation of the DC method which combines the ATS and the UTI theories. In
Section 4, we prove that the DC method is obtained as the Shapley value of appropriately
defined TU-games. In Section 5, we explore the stability of the DC method by establishing
the concavity of these games. In Section 6, we give some concluding remarks on another
compensation method, called the Upstream Compensation (UC) method, based on the
downstream responsibility principle implied by the UTI theory.

2 Preliminaries

2.1 Cooperative TU-games and solutions

A cooperative game with transferable utility (or simply a TU-game) on a finite set N ⊂ N
of players is a mapping v : 2N −→ R such that v(∅) = 0. A non-empty subset S ⊆ N is
called a coalition, whose cardinality will be denoted by s. For any coalition S ⊆ N , v(S)
describes the worth that coalition S can achieve when all its members cooperate. The set
of all TU-games is denoted by G.

A payoff vector for game (N, v) ∈ G is an n-dimensional vector x ∈ RN assigning a
payoff xi ∈ R to any player i ∈ N . A solution on G is a function ϕ which associates with
each TU-game (N, v) ∈ G a subset ϕ(N, v) ⊆ RN of payoff vectors. If ϕ assigns a unique
payoff vector to each TU-game (N, v) ∈ G, then ϕ is called a value. One of the most
well-known solutions for TU-games is the Shapley value (Shapley, 1953 [25]) given by

Shi(N, v) =
∑

S⊆N\{i}

s!(n− s− 1)!

n!
(v(S ∪ {i})− v(S)) for all i ∈ N.

The Shapley value has appealing properties and has been successfully applied to a diversity
of fields (Moretti and Patrone, 2008 [21]).

A TU-game can reflect costs or rewards. The following definition and property refer
to costs and will be useful in the context of cost allocation of a polluted river. The core
(Shapley, 1955 [26]) of a cost game (N, v) ∈ G is given by

C(N, v) =

{
x ∈ RN :

∑
i∈N

xi = v(N),
∑
i∈S

xi ≤ v(S) for all S ⊂ N

}
.

Given a payoff vector in the core, the grand coalition N forms and distributes the total
cost to its members in such a way that no coalition can dispute this distribution of costs
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by breaking off from the grand coalition.
It is widely known that a convex game always has a non-empty core and, in particular

the Shapley value belongs to the core (Moulin, 1988 [22]). For cost games, the convexity
is instead replaced by the concavity of the game. A TU-game (N, v) ∈ G is concave if for
all i ∈ N , all S, T ⊆ N \ {i}, if S ⊆ T , then

v(T ∪ {i})− v(T ) ≤ v(S ∪ {i})− v(S) (1)

Thus, the game (N, c) is concave if the marginal contribution of a player to a coalition is
monotone non-increasing with respect to set-theoretic inclusion.

2.2 Polluted river problems under waste flow control

A polluted river problem under waste flow control is given by a triple (N, c, γ), where
N = {1, . . . , n} is a finite set of agents located along a river divided into n segments, c ∈ RN

+

is an n-dimensional cost vector, and γ ∈ [0, 1]N\{n} is an (n − 1)-dimensional wastewater
treatment rate vector. The river segments are indexed in a given order i = 1, 2, . . . , n from
upstream to downstream, and each agent is located in one of segments according to this
order. The cost vector c ∈ RN

+ is such that ci corresponds to the cost of cleaning river
segment i in order to satisfy environmental standards for water quality. The wastewater
treatment rate vector γ ∈ [0, 1]N\{n} is such that γi represents the proportion of waste that
is transferred from segment i to its unique downstream neighbor.7

A cost allocation for a polluted river problem under waste flow control (N, c, γ) is a
vector x = (x1, . . . , xn) ∈ RN

+ such that
∑

i∈N xi =
∑

i∈N ci, where xi is the cost to be
paid by agent i ∈ N . A cost sharing method is a mapping g that assigns a cost alllocation
g(N, c, γ) ∈ RN

+ to every (N, c, γ).
The following three cost sharing methods was respectively introduced by Ni and Wang

(2007 [23]) and Dong et al. (2012 [12]). First, the Local Responsibility Sharing (LRS)
method assigns to every agent its own cost, and is given by

gLRSi (N, c, γ) = ci for all i ∈ N.

The Upstream Equal Sharing (UES) method shares equally the cost of cleaning a certain
river segment among all agents that are located upstream of that segment, and is given by

gUESi (N, c, γ) =
n∑
k=i

ck
k

for all i ∈ N.

The Downstream Equal Sharing (DES) method shares equally the cost of cleaning a certain
river segment among all agents that are located downstream of that segment, and is given
by

7In our model, it is not necessary to specify the wastewater treatment rate of the last segment at the
mouth of the river.
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gDESi (N, c, γ) =
i∑

k=1

ck
n− k + 1

for all i ∈ N.

Obviously, the three above methods do not take into account the waste flows between
river segments that depend on their wastewater treatment rates. Precisely, for any two
river segments i, j ∈ N such that i < j, the real number αij =

∏j−1
k=i(1 − γk) is the waste

transfer rate from i to j when every agent k ∈ {i, i + 1, . . . , j − 1} does not clean up the
waste in its own territory.8 The product αijci then represents the transferred cleaning cost
agent j has to pay for the cleaning up of the waste flow from river segment i. Considering
the waste flows between river segments from upstream to downstream, we propose a new
cost sharing method, called the Downstream Compensation (DC) method, given by

gDCi (N, c, γ) = ci +
i−1∑
k=1

αki ck
i− k + 1

−
n∑

p=i+1

i∑
k=1

αkpck

(p− k + 1)(p− k)
for all i ∈ N (2)

where, by convention, α0
1 = αnn+1 = 0. The DC method is a combination of the ATS and the

UTI theories by which the cost agent i ∈ N has to pay is composed of three parts. First,
agent i ∈ N covers his own cost ci according to the local responsibility principle implied by
the ATS theory. Second, agent i ∈ N compensates every agent k ∈ {1, . . . , i−1} according
to the upstream responsibility principle implied by the UTI theory. This compensation
is based on the transferred cleaning cost αki ck. Noting that the number of river segments

from k to i, k ∈ {1, . . . , i− 1}, is i− k+ 1, it is common for i to compensate
αk
i ck

i−k+1
. Third,

following the upstream responsibility principle, every agent p ∈ {i+ 1, . . . , n} compensates
agent i ∈ N . This compensation corresponds to the transferred cleaning cost αkpck which
is divided by the number p − k + 1 of agents involved in the waste flow from k to p, and
is then shared equally among the p − k agents that are located upstream river segment
p, i.e., k + 1, k + 2, . . . , p. Interestingly, it turns out that the LRS and the DES methods
become special cases of the DC method.

Proposition 2.1. For every polluted river problem under waste flow control (N, c, γ), it
holds that

(i) If αij = 0 for all i, j ∈ N such that i < j, then the DC method coincides with the
LRS method, i.e., gDCi (N, c, γ) = gLRSi (N, c, γ) for all i ∈ N ;

(ii) If αij = 1 for all i, j ∈ N such that i < j, then the DC method coincides with the
DES method, i.e., gDCi (N, c, γ) = gDESi (N, c, γ) for all i ∈ N .

8If there exists an agent between i and j, including i itself, that absords all the pollution in its territory,
i.e. γk = 1 for some k ∈ {i, i+ 1, . . . , j − 1}, then αi

j = 0. On the contrary, if all the agents between i and
j, including i itself, have no wastewater treament ability, i.e. γk = 0 for all k ∈ {i, i + 1, . . . , j − 1}, then
αi
j = 1.
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Proof. (i) The proof follows directly from (2) by applying αij = 0 for all i, j ∈ N such
that i < j.
(ii) Assume that αij = 1 for all i, j ∈ N such that i < j. Then, it holds that

gDCi (N, c, γ) = ci +
i−1∑
k=1

ck
i− k + 1

−
n∑

l=i+1

i∑
k=1

ck
(l − k + 1)(l − k)

= ci −
n∑

l=i+1

ci
(l − i+ 1)(l − i)

+
i−1∑
k=1

ck
i− k + 1

−
n∑

l=i+1

i−1∑
k=1

ck
(l − k + 1)(l − k)

= ci −
n∑

l=i+1

(
ci
l − i

− ci
l − i+ 1

)
+

i−1∑
k=1

ck
i− k + 1

−
i−1∑
k=1

n∑
l=i+1

ck
(l − k + 1)(l − k)

= ci − ci
(

1− 1

n− i+ 1

)
+

i−1∑
k=1

ck
i− k + 1

−
i−1∑
k=1

n∑
l=i+1

(
ck
l − k

− ck
l − k + 1

)

=
ci

n− i+ 1
+

i−1∑
k=1

ck
i− k + 1

−
i−1∑
k=1

(
ck

i− k + 1
− ck
n− k + 1

)

=
ci

n− i+ 1
+

i−1∑
k=1

ck
n− k + 1

=
i∑

k=1

ck
n− k + 1

= gDESi (N, c, γ),

which concludes the proof. 2

It is worth noting that when the river segments do not have any wastewater treatment
ability as in (ii) of Proposition 2.1, the DC method also coincides with the Airport Landing
Fee solution (Littlechild and Owen, 1973 [19]).

To conclude this preliminary section, we introduce a new set of TU-games which will
be useful to establish the fairness and the stability of the DC method in Sections 4 and
5. The Downstream-oriented game (N, vD) ∈ G associated to the polluted river problem
under waste flow control (N, c, γ) is defined for every coalition S = {i1, i2, . . . , is} ⊆ N ,
i1 < i2 < · · · < is, by

vD(S) =
∑
i∈S

ci +
s∑

k=1

ik−1∑
t=i(k−1)+1

αtikct (3)

where, by convention, i0 = 0. The worth vD(S) characterizes the cleaning costs that
coalition S should undertake when the upstream players of its members do not clean up the
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pollutants in their territories. Precisely, players in S are first responsible for their own total
cost

∑
i∈S ci according to the ATS theory. Second, for every player t ∈ {i(k−1)+1, . . . , ik−1}

where k ∈ {1, . . . , s}, since t is not a member of S, the transferred waste from t heaps up
in ik. Hence, the transferred cleaning cost αtikct should also be covered by coalition S
according to the UTI theory insofar as these players are located between segments i(k−1)
and ik. Note that if i(k−1) and ik are located next to each other, player i(k−1) cleans up the

waste in its own territory, and therefore the transferred cleaning cost α
i(k−1)

ik
ci(k−1)

does not

appear in the expression of vD(S).

3 Procedural implementation of the DC method

It is generally assumed that the grand coalition has to be formed in order to get Pareto
efficient solutions such as, for example, the Shapley value (Shapley, 1953 [25]) and the
core (Shapley, 1955 [26]). The cost allocation scenario envisaged here to implement the
DC method takes up Shapley’s idea of a one-by-one formation of the grand coalition and
consists of the following steps.

1. Choose any polluted river problem under waste flow control (N, c, γ) and any arrival
order π of agents on N to gradually form the grand coalition.9

2. Each entering agent i ∈ N has to pay for its own cost ci.

3. Each entering agent i ∈ N asks each agent p ∈ N such that p > i and π(p) < π(i) to

compensate it for the amount of
∑i

k=1

αk
pck

(p−k+1)(p−k) .

4. For each entering agent i ∈ N , each agent q ∈ N such that q < i and π(q) < π(i)

asks agent i to compensate it for the amount of
∑q

k=1
αk
i ck

(i−k+1)(i−k) .

5. Steps 1-4 determine a cost allocation x ∈ RN
+ such that

xi = ci +
i−1∑
q=1

q∑
k=1

αki ck
(i− k + 1)(i− k)

−
n∑

p=i+1

i∑
k=1

αkpck

(p− k + 1)(p− k)
for all i ∈ N (4)

While Step 2 is based on the local responsibility principle implied by the ATS theory, Steps
3 and 4 are based on the downstream compensation principle implied by the UTI theory.
In addition, an interesting observation is that cost allocation x ∈ RN

+ given by (4) at Step
5 is independent of the arrival order π selected at Step 1. This is a main difference with
existing allocation scenarios usually proposed to implement values (see e.g. Malawski, 2013
[20]) that take the average of some contributions vectors over all the n! possible arrival

9Formally, an arrival order π on N assigns a position π(i) to each agent i ∈ N .
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orders π on N .

The following result establishes the relationship between the cost allocation scenario
described above and the DC method.

Theorem 3.1. For every polluted river problem under waste flow control (N, c, γ), the
DC method coincides with the cost allocation given by (4).

Proof. It suffices to prove that the total cost compensation from agent i ∈ N obtained by
its upstream agents are equal in both expressions (2) and (4). Consequently, one has

i−1∑
q=1

q∑
k=1

αki ck
(i− k + 1)(i− k)

=
i−1∑
k=1

∑
k≤q≤i−1

αki ck
(i− k + 1)(i− k)

=
i−1∑
k=1

(i− k)
αki ck

(i− k + 1)(i− k)

=
i−1∑
k=1

αki ck
(i− k + 1)

,

completing the proof. 2

The following three-agent example illustrates the cost allocation scenario.

Example 3.2. Consider a polluted river problem under waste flow control (N, c, γ) where
N = {1, 2, 3} and the arrival order π such that π(1) = 2, π(2) = 3 and π(3) = 1. Agent
3 first enters and undertakes its own cost c3 with no costs for the other two agents. At
this first step, the cost allocation is (0, 0, c3). Then, agent 1 joins the coalition. Due to the
cost allocation scenario rules, agent 1 pays its own cost c1, and asks agent 3 to compensate

it by paying the amount of
α1
3c1

3×2 . At this second step, agent 2 still has no costs and the

cost allocation is (c1 − α1
3c1
6
, 0,

α1
3c1
6

). Finally, agent 2 enters the coalition and undertakes

its own cost c2. It also asks agent 3 to compensate it by paying the amount of
α1
3c1

3×2 +
α2
3c2
2

.

Furthermore, agent 2 compensates agent 1 by paying the amount of
α1
2c1
2

. At this third

step, the cost allocation is (−α1
2c1
2
, c2 +

α1
2c1
2
− (

α1
3c1
6

+
α2
3c2
2

),
α1
3c1
6

+
α2
3c2
2

). Summating the

costs covered at the three steps, we then obtain (c1− α1
2c1
2
− α1

3c1
6

, c2 +
α1
2c1−α2

3c2
2

− α1
3c1
6
, c3 +

α2
3c2
2

+
α1
3c1
3

).

4 The DC method and the Shapley value

In this section, we investigate the fairness of the DC method for polluted river problems
under waste flow control. Precisely, we want to establish that the DC method is obtained
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as the Shapley value (Shapley, 1953 [25]) of the Downstream-oriented game given by (3).
The following lemma brings forward the marginal contributions to the coalitions.

Lemma 4.1. Let (N, vD) ∈ G be a Downstream-oriented game. Then, for every coalition
S = {i1, i2, . . . , is} ⊆ N where i1 < i2 < · · · < is, and all i 6∈ S, it holds that

(i) If i < i1, then vD(S ∪ {i})− vD(S) = ci +
∑i−1

t=1 α
t
ict −

∑i
t=1 α

t
i1
ct;

(ii) If i > is, then vD(S ∪ {i})− vD(S) = ci +
∑i−1

t=is+1 α
t
ict;

(iii) If there exists p ∈ {1, 2, . . . , s − 1} such that ip, i(p+1) ∈ S and ip < i < i(p+1), then

vD(S ∪ {i})− vD(S) = ci +
∑i−1

t=ip+1 α
t
ict −

∑i
t=ip+1 α

t
i(p+1)

ct.

Proof. Let S = {i1, i2, . . . , is} ⊆ N be a coalition where i1 < i2 < · · · < is.
(i) First, take any player i 6∈ S such that i < i1. It follows from (3) that

vD(S ∪ {i}) =
∑

k∈S∪{i}

ck +
i−1∑
t=1

αtict +

i1−1∑
t=i+1

αti1ct +
s∑

k=2

ik−1∑
t=i(k−1)+1

αtikct,

and

vD(S) =
∑
k∈S

ck +

i1−1∑
t=1

αti1ct +
s∑

k=2

ik−1∑
t=i(k−1)+1

αtikct.

Hence, it holds that

vD(S ∪ {i})− vD(S) = ci +
i−1∑
t=1

αtict −
i∑
t=1

αti1ct.

(ii) Second, take any player i 6∈ S such that i > is. It follows from (3) that

vD(S ∪ {i}) =
∑

k∈S∪{i}

ck +
s∑

k=1

ik−1∑
t=i(k−1)+1

αtikct +
i−1∑

t=is+1

αtict

= vD(S) + ci +
i−1∑

t=is+1

αtict.

(iii) Third, take any player i 6∈ S such that ip < i < i(p+1) for some p ∈ {1, 2, . . . , s − 1}.
It follows from (3) that

vD(S∪{i}) =
∑

k∈S∪{i}

ck+

p∑
k=1

ik−1∑
t=i(k−1)+1

αtikct+
i−1∑

t=ip+1

αtict+

i(p+1)−1∑
t=i+1

αti(p+1)
ct+

s∑
k=p+2

ik−1∑
t=i(k−1)+1

αtikct

10



and

vD(S) =
∑
k∈S

ck +

p∑
k=1

ik−1∑
t=i(k−1)+1

αtikct +

i(p+1)−1∑
t=ip+1

αti(p+1)
ct +

s∑
k=p+2

ik−1∑
t=i(k−1)+1

αtikct.

Hence, it holds that

vD(S ∪ {i})− vD(S) = ci +
i−1∑

t=ip+1

αtict +

i(p+1)−1∑
t=i+1

αti(p+1)
ct −

i(p+1)−1∑
t=ip+1

αti(p+1)
ct

= ci +
i−1∑

t=ip+1

αtict −
i∑

t=ip+1

αti(p+1)
ct,

which concludes the proof. 2

It follows with Lemma 4.1 about the marginal contributions that the DC method can
be obtained by applying the Shapley value to the Downstream-oriented game.

Theorem 4.2. Let (N, c, γ) be a polluted river problem under waste flow control. Then
gDC(N, c, γ) = Sh(N, vD).

Proof. First, we deduce from the marginal contributions in Lemma 4.1 that the Shapley
value of (N, vD) for any player i ∈ N consists of the following three items: ci, α

k
i ck with

1 ≤ k ≤ i− 1, and αkpck with 1 ≤ k ≤ i and i+ 1 ≤ p ≤ n. The coefficients of these items
are respectively denoted by A, B and C so that

Shi(N, v
D) = Aci +

i−1∑
k=1

Bαki ck +
n∑

p=i+1

i∑
k=1

Cαkpck.

Second, we want to study coefficients A, B and C of the above expression of the Shapley
value. Regarding coefficient A, it obviously holds that

A =
∑

S⊆N\{i}

s!(n− s− 1)!

n!

= 1.

In order, then, to determine coefficient B, it is worth noting that αki ck where 1 ≤ k ≤
i − 1 appears in the three cases of Lemma 4.1. Furthermore, given a coalition S =
{i1, i2, . . . , is} ⊆ N where i1 < i2 < · · · < is, and an agent k ∈ N such that k ≤ i − 1, it
holds that k, k + 1, . . . , i− 1, i 6∈ S if and only if one of the following three cases happens:
(i) i < i1 and 1 ≤ k ≤ i − 1; (ii) i > is and is + 1 ≤ k ≤ i − 1; and (iii) there exists

11



p ∈ {1, 2, · · · , s− 1} such that ip < i < i(p+1) and ip + 1 ≤ k ≤ i− 1. Thus, coefficient B
can be written as

B =
∑

k∈N :k≤i−1,
k,k+1,...,i−1,i 6∈S

s!(n− s− 1)!

n!

=

n−(i−k+1)∑
s=0

(
n− (i− k + 1)

s

)
× s!(n− s− 1)!

n!

=

n−(i−k+1)∑
s=0

(n− (i− k + 1))!

(n− s− (i− k + 1))!
× (n− s− 1)!

n!

=

n−(t+1)∑
s=0

(n− (t+ 1))!

(n− s− t− 1)!
× (n− s− 1)!

n!

=
(n− t− 1)!t!

n!
×

n−(t+1)∑
s=0

(
n− s− 1

t

)

=
(n− t− 1)!t!

n!
×

n−(t+1)∑
s=0

((
n− s
t+ 1

)
−
(
n− s− 1

t+ 1

))
=

(n− t− 1)!t!

n!
×
(

n

t+ 1

)
=

1

t+ 1

=
1

i− k + 1
,

where t = i− k and the sixth equality follows from Pascal’s triangle with, by convention,(
t
t+1

)
= 0.

In order finally to determine coefficient C, note that αkpck where 1 ≤ k ≤ i < p ≤ n appears
in cases (i) and (iii) of Lemma 4.1. Furthermore, given a coalition S = {i1, i2, . . . , is} ⊆ N
where i1 < i2 < · · · < is, and two agents k, p ∈ N such that 1 ≤ k ≤ i < p ≤ n, it holds
that k, k+1, · · · , p−1 6∈ S and p ∈ S if and only if one of the following two cases happens:
(i) i < i1 = p; and (ii) there exists l ∈ {1, 2, · · · , s − 1} such that il < i < i(l+1) = p and
il + 1 ≤ k ≤ i. Thus, coefficient C is given by

12



C = −
∑

k,p∈N :1≤k≤i<p≤n,
k,k+1,···p−16∈S,p∈S

s!(n− s− 1)!

n!

= −
n−(p−k)∑
s=1

(
n− (p− k)− 1

s− 1

)
× s!(n− s− 1)!

n!

= −
n−t∑
s=1

(
n− t− 1

s− 1

)
× s!(n− s− 1)!

n!

= −
n−t∑
s=1

(n− t− 1)!

(n− t− s)!
× s(n− s− 1)!

n!

= −(t− 1)!(n− t− 1)!

n!
×

n−t∑
s=1

s

(
n− s− 1

t− 1

)
= −(t− 1)!(n− t− 1)!

n!
×
(

n

t+ 1

)
= − 1

(t+ 1)t

= − 1

(p− k + 1)(p− k)
,

where t = p−k and the equality
∑n−t

s=1 s
(
n−s−1
t−1

)
=
(
n
t+1

)
can be proved by induction on the

number n of agents. 2

The following three-agent example illustrates the result of Theorem 4.2.

Example 4.3. Consider the polluted river problem under waste flow control (N, c, γ) with
N = {1, 2, 3}, cost vector c = (1, 2, 1) and wastewater treatment rate vector γ = (1

2
, 1
2
).

The waste transfer rates are then given by α1
2 = 1

2
, α1

3 = 1
4

and α2
3 = 1

2
. The cost

allocation obtained by the DC method is given by gDC(N, c, γ) = (17
24
, 41
24
, 19
12

). Moreover,
the Downstream-oriented game (N, vD) ∈ G defined by (3) is summarized in the following
table.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
vD(S) 1 5/2 9/4 3 3 7/2 4

The Shapley value of this Downstream-oriented game is given by Sh(N, vD) = (17
24
, 41
24
, 19
12

)
as predicted by Theorem 4.2.
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5 The concavity of the Downstream-oriented game

In this section, we want to establish the concavity of the Downstream-oriented game.
In the context of cost games, this property indicates that the cost allocation obtained by
the DC method belongs to the core of (N, vD) so that no agent or group of agents can
contest this allocation.

Theorem 5.1. Let (N, c, γ) be a polluted river problem under waste flow control. Then
gDC(N, c, γ) ∈ C(N, vD).

Proof. Let S = {i1, i2, . . . , is} ⊆ N be a coalition where i1 < i2 < · · · < is. We want to
show that for all i, j 6∈ S, we have vD(S∪{i, j})−vD(S∪{j}) ≤ vD(S∪{i})−vD(S) which
is equivalent to the concavity property given by (1). To this end, we distinguish three cases.

Case 1 First, assume that i < i1. We then distinguish three subcases.
Subcase 1.1 Assume that j < i < i1. On the one hand, since j, i1 ∈ S ∪ {j}, it follows

from point (iii) of Lemma 4.1 that

vD(S ∪ {i, j})− vD(S ∪ {j}) = ci +
i−1∑
t=j+1

αtict −
i∑

t=j+1

αti1ct

= ci − αii1ci +
i−1∑
t=j+1

(αti − αti1)ct.

On the other hand, by point (i) of Lemma 4.1, one has

vD(S ∪ {i})− vD(S) = ci +
i−1∑
t=1

αtict −
i∑
t=1

αti1ct

= ci − αii1ci +

j∑
t=1

(αti − αti1)ct +
i−1∑
t=j+1

(αti − αti1)ct.

Since i < i1, we have αti ≥ αti1 for all t ∈ {1, . . . , j}, and we conclude that vD(S ∪ {i, j})−
vD(S ∪ {j}) ≤ vD(S ∪ {i})− vD(S).

Subcase 1.2 Assume that i < j < i1. It follows from point (i) of Lemma 4.1 that

vD(S ∪ {i, j})− vD(S ∪ {j}) = ci +
i−1∑
t=1

αtict −
i∑
t=1

αtjct,

and

vP (S ∪ {i})− vP (S) = ci +
i−1∑
t=1

αtict −
i∑
t=1

αti1ct.
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Since j < i1, we have αtj ≥ αti1 for all t ∈ {1, . . . , i}. Thus, it holds that −
∑i

t=1 α
t
jct ≤∑i

t=1 α
t
i1
ct, and so vD(S ∪ {i, j})− vD(S ∪ {j}) ≤ vD(S ∪ {i})− vD(S).

Subcase 1.3 Assume that i < i1 < j. By point (i) of Lemma 4.1 it holds that

vD(S ∪ {i, j})− vD(S ∪ {j}) = ci +
i−1∑
t=1

αtict −
i∑
t=1

αti1ct

= vD(S ∪ {i})− vD(S).

Case 2 Second, assume that i > is. We then distinguish three subcases.
Subcase 2.1 Assume that i > is > j. It follows from point (ii) of Lemma 4.1 that

vD(S ∪ {i, j})− vD(S ∪ {j}) = ci +
i−1∑

t=is+1

αtict

= vD(S ∪ {i})− vD(S).

Subcase 2.2 Assume that i > j > is. By point (ii) of Lemma 4.1, one has

vD(S ∪ {i, j})− vD(S ∪ {j}) = ci +
i−1∑
t=j+1

αtict,

and

vD(S ∪ {i})− vD(S) = ci +
i−1∑

t=is+1

αtict

= ci +
i−1∑
t=j+1

αtict +

j∑
t=is+1

αtict.

Thus, we conclude that vD(S ∪ {i, j})− vD(S ∪ {j}) ≤ vD(S ∪ {i})− vD(S).
Subcase 2.3 Assume that j > i > is. On the one hand, since j, is ∈ S ∪ {j}, it follows

from point (iii) of Lemma 4.1 that

vD(S ∪ {i, j})− vD(S ∪ {j}) = ci +
i−1∑

t=is+1

αtict −
i∑

t=is+1

αtjct.

On the other hand, by point (ii) of Lemma 4.1, one has

vD(S ∪ {i})− vD(S) = ci +
i−1∑

t=is+1

αtict.
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Thus, we conclude that vD(S ∪ {i, j})− vD(S ∪ {j}) ≤ vD(S ∪ {i})− vD(S).

Case 3 Third, assume that i1 < i < is. Since i 6∈ S, there exists p ∈ {1, 2, · · · , s− 1} such
that ip < i < i(p+1). We distinguish three subcases.

Subcase 3.1 Assume that j < ip or j > i(p+1). It follows from point (iii) of Lemma 4.1
that

vD(S ∪ {i, j})− vD(S ∪ {j}) = ci +
i−1∑

t=ip+1

αtict −
i∑

t=ip+1

αti(p+1)
ct

= vD(S ∪ {i})− vD(S).

Subcase 3.2 Assume that ip < j < i < i(p+1). Since j, i(p+1) ∈ S ∪ {j}, it follows from
point (iii) of Lemma 4.1 that

vD(S ∪ {i, j})− vD(S ∪ {j}) = ci +
i−1∑
t=j+1

αtict −
i∑

t=j+1

αti(p+1)
ct

= ci − αii(p+1)
ci +

i−1∑
t=j+1

(αti − αti(p+1)
)ct,

and

vD(S ∪ {i})− vD(S) = ci +
i−1∑

t=ip+1

αtict −
i∑

t=ip+1

αti(p+1)
ct

= ci − αii(p+1)
ci +

i−1∑
t=ip+1

(αti − αti(p+1)
)ct.

Since ip < j and αti ≥ αti(p+1)
for all t ∈ {ip+1, . . . , i−1}, we conclude that vD(S∪{i, j})−

vD(S ∪ {j}) ≤ vD(S ∪ {i})− vD(S).
Subcase 3.3 Assume that ip < i < j < i(p+1). On the one hand, since ip, j ∈ S ∪ {j},

it follows from point (iii) of Lemma 4.1 that

vD(S ∪ {i, j})− vD(S ∪ {j}) = ci +
i−1∑

t=ip+1

αtict −
i∑

t=ip+1

αtjct

= ci − αijci +
i−1∑

t=ip+1

(αti − αtj)ct.
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On the other hand, by point (iii) of Lemma 4.1, one has

vD(S ∪ {i})− vD(S) = ci +
i−1∑

t=ip+1

αtict −
i∑

t=ip+1

αti(p+1)
ct

= ci − αii(p+1)
ci +

i−1∑
t=ip+1

(αti − αti(p+1)
)ct.

Since j < i(p+1), we have −αij < −αii(p+1)
and αti−αtj ≤ αti−αti(p+1)

for all t ∈ {ip+1, . . . , i−
1}. Thus, we conclude that vD(S ∪ {i, j})− vD(S ∪ {j}) ≤ vD(S ∪ {i})− vD(S). 2

The following three-agent example illustrates the result of Theorem 5.1.

Example 5.2. Consider the polluted river problem under waste flow control (N, c, γ) with
N = {1, 2, 3}, cost vector c = (1, 2, 1) and wastewater treatment rate vector γ = (2

3
, 1
2
).

The waste transfer rates are then given by α1
2 = 1

3
, α1

3 = 1
6

and α2
3 = 1

2
. The cost

allocation obtained by the DC method is given by gDC(N, c, γ) = (29
36
, 59
36
, 14

9
). Moreover,

the Downstram-oriented game (N, vD) ∈ G defined by (3) is summarized in the following
table.

S {1} {2} {3} {1, 2} {1, 3} {2, 3} {1, 2, 3}
vD(S) 1 7/3 13/6 3 3 10/3 4

The core C(N, vD) contains all payoff vectors x ∈ R3
+ such that

∑
i∈N xi = 4, 2

3
≤ x1 ≤ 1,

1 ≤ x2 ≤ 7
3
, and 1 ≤ x3 ≤ 13

6
. Thus, we have gDC(N, c, γ) = (29

36
, 59
36
, 14

9
) ∈ C(N, vD) as

predicted by Theorem 5.1.

6 Concluding remarks

In this paper we considered polluted river problems under waste flow control and intro-
duced a new cost sharing method, called the DC method, for which the two standard LRS
and DES methods are special cases, as well as the Airport Landing Fee solution (Littlechild
and Owen, 1973 [19]). We showed that the DC method has a good interpretation in terms
of International Water Law since it is implemented by a cost allocation scenario based on
the ATS and the UTI theories (Theorem 3.1). We also showed that the DC method has
appealing properties insofar as it coincides with the Shapley value of the Downstream-
oriented game (Theorem 4.2), and that no agent or group of agents has any interest to
contest this method since it is core stable (Theorem 5.1).

Although, similarly to Dong et al. (2012 [12]), we focused on the upstream responsibility
principle in order to construct our cost sharing method, we mention that our work can be
easily extended by considering the downstream responsibility principle as suggested by Ni
and Wang (2007 [23]). In this way, we can propose an alternative cost sharing method,
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called the Upstream Compensation method, which is complementary to the DC method in
the sense that any agent has to pay a part of the downstream transferred cleaning costs.
Formally, the Upstream Compensation (UC) method is given by

gUCi (N, c, γ) = ci +
n∑

k=i+1

αikci
k − i+ 1

−
i−1∑
p=1

n∑
k=i

αpkcp
(k − p+ 1)(k − p)

for all i ∈ N (5)

where α0
1 = αnn+1 = 0. The UC method is composed of three parts. First, agent i ∈ N

covers his own cost ci. Second, agent i ∈ N compensates every agent k ∈ {i + 1, . . . , n}
according to the downstream responsibility principle implied by the UTI theory. This
compensation corresponds to the transferred cleaning cost αikci. Noting that the number
of river segments from i to k, k ∈ {i + 1, . . . , n}, is k − i + 1, it is common for i to

compensate
αi
kci

k−i+1
. Third, following the downstream responsibility principle, every agent

p ∈ {1, . . . , i − 1} compensates agent i ∈ N . This compensation corresponds to the cost
αpkcp which is divided by the number k− p+ 1 of agents involved in the waste flow from p
to k, and is then shared equally among the k− p agents that are located downstream river
segment p, including agent i itself. Consequently, the LRS and the UES methods become
special cases of the UC method.

Furtermore, the cost allocation scenario that implements the UC method consists of the
following steps.

1. Choose any polluted river problem under waste flow control (N, c, γ) and any arrival
order π of agents on N to gradually form the grand coalition.

2. Each entering agent i ∈ N has to pay for its own cost ci.

3. Each entering agent i ∈ N asks each agent p ∈ N such that p < i and π(p) < π(i) to

compensate it for the amount of
∑n

k=i

αp
kcp

(k−p+1)(k−p) .

4. For each entering agent i ∈ N , each agent q ∈ N such that q > i and π(q) < π(i)

asks agent i to compensate it for the amount of
∑n

k=q

αi
kci

(k−i+1)(k−i) .

5. Steps 1-4 determine a cost allocation x ∈ RN
+ such that

xi = ci +
n∑

q=i+1

n∑
k=q

αikci
(k − i+ 1)(k − i)

−
i−1∑
p=1

n∑
k=i

αpkcp
(k − p+ 1)(k − p)

for all i ∈ N (6)

The relationship between the cost allocation scenario described above and the UC method
is underlined by the following result.

Theorem 6.1. For every polluted river problem under waste flow control (N, c, γ), the
UC method coincides the cost allocation given by (6).
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The proof of this result is similar to the one of Theorem 3.1.

Moreover, the Upstream-oriented game (N, vU) ∈ G associated to the polluted river
problem under waste flow control (N, c, γ) is defined for every coalition S = {i1, i2, . . . , is} ⊆
N , i1 < i2 < · · · < is, by

vU(S) =
∑
i∈S

ci +
s∑

k=1

i(k+1)−1∑
t=ik+1

αikt cik .

where, by convention, i(s+1) = n+ 1. Thus, players in S are first responsible for their own
total cost

∑
i∈S ci. Second, for every player t ∈ {ik+1, . . . , i(k+1)−1} where k ∈ {1, . . . , s},

the transferred cleaning cost αikt cik is also covered by coalition S since these players are
located dowstream of segment ik and upstream of segment i(k+1). Note that if ik and
i(k+1) are located next to each other, player ik cleans up the waste in its own territory,

and therefore the transferred cleaning cost αiki(k+1)
cik does not appear in the expression of

vU(S).
Analogously to Theorems 4.2 and 5.1, the UC method can then be obtained by applying

the Shapley value to the Upstream-oriented game, and also belongs to the core of this game.

Theorem 6.2. Let (N, c, γ) be a polluted river problem under waste flow control. Then
gUC(N, c, γ) = Sh(N, vU) and gUC(N, c, γ) ∈ C(N, vU).

To conclude, in real life situations, the rivers often have a tree structure such as, for
example, the Baiyangdian Lake Catchment in Northern China depicted in Figure 3 of
Dong et al. (2012 [12]). Although such a river structure is not formalized in our model,
we mention that the DC and the UC methods can also be applied to this river type by
decomposing them into several tributaries with a line structure. Thus, our compensation
methods are also appropriate solutions for sharing the pollutant-cleaning costs of any river
for which the waste flows can be partially controlled.
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